期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ballistic Properties of Some Low Solid Loading Butalites Formulations
1
作者 AHMED W M 《Computer Aided Drafting,Design and Manufacturing》 2010年第2期42-47,共6页
The ballistic properties of a low solid loading composite solid propellant family (Butalites) was studied experimentally by using propellant formulations based on hydroxy-terminated polybutadiene pre-polymer (HTPB... The ballistic properties of a low solid loading composite solid propellant family (Butalites) was studied experimentally by using propellant formulations based on hydroxy-terminated polybutadiene pre-polymer (HTPB) as fuel binder main backbone, mono and bi-modal system ammonium perchlorate oxidizer (AP), copper chromite (CC) as burning rate accelerator and aluminum powder (A1) as metallic fuel. Higher pressures and AP contents as well as smaller AP particle size were found to increase burning rate. The same behavior verified with AI and CC addition. A significant increase of burning rate was recorded when CC added to the aluminized formulations compared with the non-aluminized of the same oxidizer solid loading and particle size. 展开更多
关键词 composite solid propellants low solid loading propellants ballistic properties copper chromite
下载PDF
Propeller Torque Load and Propeller Shaft Torque Response Correlation During Ice-propeller Interaction 被引量:3
2
作者 Drazen Polic Soren Ehlers Vilmar AEsoy 《Journal of Marine Science and Application》 CSCD 2017年第1期1-9,共9页
Ships use propulsion machinery systems to create directional thrust. Sailing in ice-covered waters involves the breaking of ice pieces and their submergence as the ship hull advances. Sometimes, submerged ice pieces i... Ships use propulsion machinery systems to create directional thrust. Sailing in ice-covered waters involves the breaking of ice pieces and their submergence as the ship hull advances. Sometimes, submerged ice pieces interact with the propeller and cause irregular fluctuations of the torque load. As a result, the propeller and engine dynamics become imbalanced, and energy propagates through the propulsion machinery system until equilibrium is reached. In such imbalanced situations, the measured propeller shaft torque response is not equal to the propeller torque. Therefore, in this work, the overall system response is simulated under the ice-related torque load using the Bond graph model. The energy difference between the propeller and propeller shaft is estimated and related to their corresponding mechanical energy. Additionally, the mechanical energy is distributed among modes. Based on the distribution, kinetic and potential energy are important for the correlation between propeller torque and propeller shaft response. 展开更多
关键词 propeller torque load propeller shaft torque response ice-propeller interaction load-response correlation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部