The reduced-order model (ROM) for the two-dimensional supersonic cavity flow based on proper orthogonal decomposition (POD) and Galerkin projection is investigated. Presently, popular ROMs in cavity flows are base...The reduced-order model (ROM) for the two-dimensional supersonic cavity flow based on proper orthogonal decomposition (POD) and Galerkin projection is investigated. Presently, popular ROMs in cavity flows are based on an isentropic assumption, valid only for flows at low or moderate Mach numbers. A new ROM is constructed involving primitive variables of the fully compressible Navier-Stokes (N-S) equations, which is suitable for flows at high Mach numbers. Compared with the direct numerical simulation (DNS) results, the proposed model predicts flow dynamics (e.g., dominant frequency and amplitude) accurately for supersonic cavity flows, and is robust. The comparison between the present transient flow fields and those of the DNS shows that the proposed ROM can capture self-sustained oscillations of a shear layer. In addition, the present model reduction method can be easily extended to other supersonic flows.展开更多
针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计...针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计算的有限元离散方程;其次,采用POD降阶算法改善传统瞬态计算中存在的条件数过大及方程阶数过高的问题;同时对于瞬态计算中的时间步长选择问题,提出适用于非线性问题的αATS变步长策略;然后,为验证方法的有效性,基于110 kV油浸式电力变压器绕组的基本结构建立二维八分区数值计算模型,同时将计算结果与基于110 kV绕组的温升实验结果进行对比。数值计算及实验结果表明,所提算法与全阶定步长算法在流场和温度场中的精度几乎相同,且流场计算效率提升约45倍,温度场计算效率提升约38倍,计算速度得到显著提高。这一点在温升实验中同样得到验证,说明该文所提算法的准确性、高效性及一定的工程实用性。展开更多
The reduced-order finite element method (FEM) based on a proper orthogo- nal decomposition (POD) theory is applied to the time fractional Tricomi-type equation. The present method is an improvement on the general ...The reduced-order finite element method (FEM) based on a proper orthogo- nal decomposition (POD) theory is applied to the time fractional Tricomi-type equation. The present method is an improvement on the general FEM. It can significantly save mem- ory space and effectively relieve the computing load due to its reconstruction of POD basis functions. Furthermore, the reduced-order finite element (FE) scheme is shown to be un- conditionally stable, and error estimation is derived in detail. Two numerical examples are presented to show the feasibility and effectiveness of the method for time fractional differential equations (FDEs).展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11232011,11402262,11572314,and 11621202)
文摘The reduced-order model (ROM) for the two-dimensional supersonic cavity flow based on proper orthogonal decomposition (POD) and Galerkin projection is investigated. Presently, popular ROMs in cavity flows are based on an isentropic assumption, valid only for flows at low or moderate Mach numbers. A new ROM is constructed involving primitive variables of the fully compressible Navier-Stokes (N-S) equations, which is suitable for flows at high Mach numbers. Compared with the direct numerical simulation (DNS) results, the proposed model predicts flow dynamics (e.g., dominant frequency and amplitude) accurately for supersonic cavity flows, and is robust. The comparison between the present transient flow fields and those of the DNS shows that the proposed ROM can capture self-sustained oscillations of a shear layer. In addition, the present model reduction method can be easily extended to other supersonic flows.
文摘针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计算的有限元离散方程;其次,采用POD降阶算法改善传统瞬态计算中存在的条件数过大及方程阶数过高的问题;同时对于瞬态计算中的时间步长选择问题,提出适用于非线性问题的αATS变步长策略;然后,为验证方法的有效性,基于110 kV油浸式电力变压器绕组的基本结构建立二维八分区数值计算模型,同时将计算结果与基于110 kV绕组的温升实验结果进行对比。数值计算及实验结果表明,所提算法与全阶定步长算法在流场和温度场中的精度几乎相同,且流场计算效率提升约45倍,温度场计算效率提升约38倍,计算速度得到显著提高。这一点在温升实验中同样得到验证,说明该文所提算法的准确性、高效性及一定的工程实用性。
基金Project supported by the National Natural Science Foundation of China(Nos.11361035 and 11301258)the Natural Science Foundation of Inner Mongolia(Nos.2012MS0106 and 2012MS0108)
文摘The reduced-order finite element method (FEM) based on a proper orthogo- nal decomposition (POD) theory is applied to the time fractional Tricomi-type equation. The present method is an improvement on the general FEM. It can significantly save mem- ory space and effectively relieve the computing load due to its reconstruction of POD basis functions. Furthermore, the reduced-order finite element (FE) scheme is shown to be un- conditionally stable, and error estimation is derived in detail. Two numerical examples are presented to show the feasibility and effectiveness of the method for time fractional differential equations (FDEs).