s-Lap is a new gene sequence from pig retinal pigment epithelial(RPE) cells, which was found and cloned in the early period of apoptosis of RPE cells damaged with visible light. We cloned the coding area sequence of t...s-Lap is a new gene sequence from pig retinal pigment epithelial(RPE) cells, which was found and cloned in the early period of apoptosis of RPE cells damaged with visible light. We cloned the coding area sequence of the novel gene of s-Lap and constructed its recombinant eukaryotic plasmid pcDNA3.1-GFP/s-lap with the recombinant DNA technique. The expression and localization of s-lap/GFP fusion protein in CHO and B_~16 cell lines were studied with the instantaneously transfected pcDNA3.1-GFP/s-lap recombinant plasmid. ~s-Lap/GFP fusion protein can be expressed in CHO and B_~16 cells with a high rate expression in the nuclei.展开更多
Meanwhile the outbreak of the Covid-19 since December, 2019 in China, it has killed more than a hundred thousand of people of all ages and sex across the globe in a short span of time. On the bases of this study the n...Meanwhile the outbreak of the Covid-19 since December, 2019 in China, it has killed more than a hundred thousand of people of all ages and sex across the globe in a short span of time. On the bases of this study the nearest family member of the virus and its receptor binding domain of S protein including its model structure and function of its active sites were naked through Multiple Sequence Alignment, modelling and molecular docking software accordingly its repository genome databases. The virus was genetically associated and molecular evolutionary related with (<em>RaTG</em>13) and it scores 96.12% homology with 99% query coverage followed by <em>bat-SL-CoVZC</em>45 and<em> bat-SL-CoVZXC</em>21 notch 89.12% and 88.65% respectively. However, SARS and MERS corona type virus those outbreak earlier respectively less likely family members of 2019-nCoV. Though the virus has a close genetic association with those previous SARS coronaviruses, and certainly the spike protein used as a binding receptor to fight against human receptor protein of ACE 2, but on the basis of FRODOC and HDOCK server analysis multi favorable active sites of S protein was discovered such GLN493 shown as a finest key in both model and possessed a unique traits on it resulting unexpected rate of transmission and number of people died while compared to the previous one. TYR500, ASN501, GLN498 and others residues preferably contemplate site also. In particular, the diversity of the virus in the world may be due to the genome structure of the virus and S gene changed over the time, across the world against to host of human genetic diversity, which may be more robust, and may be a new and unique feature. This is because it is characterized close to contact with distance divergence between wild type novel coronavirus which was risen from China against to the genomes from Lebanon, India, Italy, and USA and so on. Thus, the World Health Organization and its researchers should focus on immunologic research and effective drug and vaccine development that will help to address the epidemiology of the virus, which can provide a long-term solution.展开更多
The aim of this study is to construct a prokaryotic expression vector of mouse Nanog gene and to express it in E. coli. A pair of primers was designed according to digestion sites in plasmid pGEX-KG and the Nanog gene...The aim of this study is to construct a prokaryotic expression vector of mouse Nanog gene and to express it in E. coli. A pair of primers was designed according to digestion sites in plasmid pGEX-KG and the Nanog gene sequence published by GenBank. The DNA fragment of 918 bp was amplified by polymerase chain reaction (PCR) from the pNA992 recombinant plasmid with Nanog gene, then cloned into pGEX-KG and transformed into the host E. coli strain TG Ⅰ. The sequence of the fragment was matched with the original sequence of pNA992. It indicated that fusion expression vector, pGEX-KG- Nanog, was constructed successfully. The pGEX-KG-Nanog plasmid was extracted from E. coli strain TG Ⅰ and was transformed into BL21(DE3) for expression. After induction by isopropyl-β-D-thiogalactoside (IPTG) at 37℃, the expression product of Nanog gene was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and the expression condition was optimized. Nanog fusion protein was successfully expressed in the form of inclusion bodies. The molecular weight of the inclusion body was 63 kDa. Meanwhile, the optimum condition for the expression of Nanog fusion protein was induced with 0.8 mmol L^-1 IPTG for 5 h. The mouse Nanog gene was successfully expressed in E. coli, which laid a foundation for the purification of Nanog protein and for the preparation of polyclonal antibody.展开更多
Two GST-IL-1 fusion genes were constructed by inserting different cDNA fragments of human interleukin1 (IL-1) into the 3'-terminus of GST gene in the fusion protein expression vector pGEX-4T. After IPTG induction ...Two GST-IL-1 fusion genes were constructed by inserting different cDNA fragments of human interleukin1 (IL-1) into the 3'-terminus of GST gene in the fusion protein expression vector pGEX-4T. After IPTG induction ,SDS-PAGE was employed to detect the gene expression. No corresponding protein encoded by GST gene fused with the whole-length 816 bp IL-1 cDNA was observed, nor was free GST protein. However, the fusion protein of GST and IL-1 cDNA without the 189 bp at the 5'- terminus was detected, amounting to 30% of the total bacterial protein expressed. This might suggest that the sequence of 1-189 bp of IL-1 cDNA affected the expression of the fusion gene. That is to say, the downstream sequence distant from the translation start codon AUG in the target gene could significantly affect the expression of the fusion gene.展开更多
PDRG1 is a small oncogenic protein of 133 residues. In normal human tissues, the p53 and DNA damageregulated gene 1(PDRG1) gene exhibits maximal expression in the testis and minimal levels in the liver. Increased expr...PDRG1 is a small oncogenic protein of 133 residues. In normal human tissues, the p53 and DNA damageregulated gene 1(PDRG1) gene exhibits maximal expression in the testis and minimal levels in the liver. Increased expression has been detected in several tumor cells and in response to genotoxic stress. High-throughput studies identified the PDRG1 protein in a variety of macromolecular complexes involved in processes that are altered in cancer cells. For example, this oncogene has been found as part of the RNA polymerase Ⅱ complex, the splicing machinery and nutrient sensing machinery, although its role in these complexes remains unclear. More recently, the PDRG1 protein was found as an interaction target for the catalytic subunits of methionine adenosyltransferases. These enzymes synthesize S-adenosylmethionine, the methyl donor for, among others, epigenetic methylations that occur on the DNA and histones. In fact, downregulation of S-adenosylmethionine synthesis is the first functional effect directly ascribed to PDRG1. The existence of global DNA hypomethylation, together with increased PDRG1 expression, in many tumor cells highlights the importance of this interaction as one of the putative underlying causes for cell transformation. Here, we will review the accumulated knowledge on this oncogene, emphasizing the numerous aspects that remain to be explored.展开更多
文摘s-Lap is a new gene sequence from pig retinal pigment epithelial(RPE) cells, which was found and cloned in the early period of apoptosis of RPE cells damaged with visible light. We cloned the coding area sequence of the novel gene of s-Lap and constructed its recombinant eukaryotic plasmid pcDNA3.1-GFP/s-lap with the recombinant DNA technique. The expression and localization of s-lap/GFP fusion protein in CHO and B_~16 cell lines were studied with the instantaneously transfected pcDNA3.1-GFP/s-lap recombinant plasmid. ~s-Lap/GFP fusion protein can be expressed in CHO and B_~16 cells with a high rate expression in the nuclei.
文摘Meanwhile the outbreak of the Covid-19 since December, 2019 in China, it has killed more than a hundred thousand of people of all ages and sex across the globe in a short span of time. On the bases of this study the nearest family member of the virus and its receptor binding domain of S protein including its model structure and function of its active sites were naked through Multiple Sequence Alignment, modelling and molecular docking software accordingly its repository genome databases. The virus was genetically associated and molecular evolutionary related with (<em>RaTG</em>13) and it scores 96.12% homology with 99% query coverage followed by <em>bat-SL-CoVZC</em>45 and<em> bat-SL-CoVZXC</em>21 notch 89.12% and 88.65% respectively. However, SARS and MERS corona type virus those outbreak earlier respectively less likely family members of 2019-nCoV. Though the virus has a close genetic association with those previous SARS coronaviruses, and certainly the spike protein used as a binding receptor to fight against human receptor protein of ACE 2, but on the basis of FRODOC and HDOCK server analysis multi favorable active sites of S protein was discovered such GLN493 shown as a finest key in both model and possessed a unique traits on it resulting unexpected rate of transmission and number of people died while compared to the previous one. TYR500, ASN501, GLN498 and others residues preferably contemplate site also. In particular, the diversity of the virus in the world may be due to the genome structure of the virus and S gene changed over the time, across the world against to host of human genetic diversity, which may be more robust, and may be a new and unique feature. This is because it is characterized close to contact with distance divergence between wild type novel coronavirus which was risen from China against to the genomes from Lebanon, India, Italy, and USA and so on. Thus, the World Health Organization and its researchers should focus on immunologic research and effective drug and vaccine development that will help to address the epidemiology of the virus, which can provide a long-term solution.
文摘The aim of this study is to construct a prokaryotic expression vector of mouse Nanog gene and to express it in E. coli. A pair of primers was designed according to digestion sites in plasmid pGEX-KG and the Nanog gene sequence published by GenBank. The DNA fragment of 918 bp was amplified by polymerase chain reaction (PCR) from the pNA992 recombinant plasmid with Nanog gene, then cloned into pGEX-KG and transformed into the host E. coli strain TG Ⅰ. The sequence of the fragment was matched with the original sequence of pNA992. It indicated that fusion expression vector, pGEX-KG- Nanog, was constructed successfully. The pGEX-KG-Nanog plasmid was extracted from E. coli strain TG Ⅰ and was transformed into BL21(DE3) for expression. After induction by isopropyl-β-D-thiogalactoside (IPTG) at 37℃, the expression product of Nanog gene was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and the expression condition was optimized. Nanog fusion protein was successfully expressed in the form of inclusion bodies. The molecular weight of the inclusion body was 63 kDa. Meanwhile, the optimum condition for the expression of Nanog fusion protein was induced with 0.8 mmol L^-1 IPTG for 5 h. The mouse Nanog gene was successfully expressed in E. coli, which laid a foundation for the purification of Nanog protein and for the preparation of polyclonal antibody.
文摘Two GST-IL-1 fusion genes were constructed by inserting different cDNA fragments of human interleukin1 (IL-1) into the 3'-terminus of GST gene in the fusion protein expression vector pGEX-4T. After IPTG induction ,SDS-PAGE was employed to detect the gene expression. No corresponding protein encoded by GST gene fused with the whole-length 816 bp IL-1 cDNA was observed, nor was free GST protein. However, the fusion protein of GST and IL-1 cDNA without the 189 bp at the 5'- terminus was detected, amounting to 30% of the total bacterial protein expressed. This might suggest that the sequence of 1-189 bp of IL-1 cDNA affected the expression of the fusion gene. That is to say, the downstream sequence distant from the translation start codon AUG in the target gene could significantly affect the expression of the fusion gene.
基金support by the Ministerio Educación y CienciaMinisterio de Economía y Competitividad of Spain(until June 2013)
文摘PDRG1 is a small oncogenic protein of 133 residues. In normal human tissues, the p53 and DNA damageregulated gene 1(PDRG1) gene exhibits maximal expression in the testis and minimal levels in the liver. Increased expression has been detected in several tumor cells and in response to genotoxic stress. High-throughput studies identified the PDRG1 protein in a variety of macromolecular complexes involved in processes that are altered in cancer cells. For example, this oncogene has been found as part of the RNA polymerase Ⅱ complex, the splicing machinery and nutrient sensing machinery, although its role in these complexes remains unclear. More recently, the PDRG1 protein was found as an interaction target for the catalytic subunits of methionine adenosyltransferases. These enzymes synthesize S-adenosylmethionine, the methyl donor for, among others, epigenetic methylations that occur on the DNA and histones. In fact, downregulation of S-adenosylmethionine synthesis is the first functional effect directly ascribed to PDRG1. The existence of global DNA hypomethylation, together with increased PDRG1 expression, in many tumor cells highlights the importance of this interaction as one of the putative underlying causes for cell transformation. Here, we will review the accumulated knowledge on this oncogene, emphasizing the numerous aspects that remain to be explored.