Abstract Considering the generalized Davey-Stewartson equation $i\mathop u\limits^. - \Delta u + \lambda \left| u \right|^p u + \mu E\left( {\left| u \right|^q } \right)\left| u \right|^{q - 2} u = 0$ where $\lambda &...Abstract Considering the generalized Davey-Stewartson equation $i\mathop u\limits^. - \Delta u + \lambda \left| u \right|^p u + \mu E\left( {\left| u \right|^q } \right)\left| u \right|^{q - 2} u = 0$ where $\lambda > 0,\mu \ge 0,E = F^{ - 1} \left( {\xi _1^2 /\left| \xi \right|^2 } \right)F$ we obtain the existence of scattering operator in ^(A↑^n) := { u ] H1(A↑^n) : |x|u ] L2(A↑^n)}.展开更多
文摘Abstract Considering the generalized Davey-Stewartson equation $i\mathop u\limits^. - \Delta u + \lambda \left| u \right|^p u + \mu E\left( {\left| u \right|^q } \right)\left| u \right|^{q - 2} u = 0$ where $\lambda > 0,\mu \ge 0,E = F^{ - 1} \left( {\xi _1^2 /\left| \xi \right|^2 } \right)F$ we obtain the existence of scattering operator in ^(A↑^n) := { u ] H1(A↑^n) : |x|u ] L2(A↑^n)}.