期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Random gradient-free method for online distributed optimization with strongly pseudoconvex cost functions
1
作者 Xiaoxi Yan Cheng Li +1 位作者 Kaihong Lu Hang Xu 《Control Theory and Technology》 EI CSCD 2024年第1期14-24,共11页
This paper focuses on the online distributed optimization problem based on multi-agent systems. In this problem, each agent can only access its own cost function and a convex set, and can only exchange local state inf... This paper focuses on the online distributed optimization problem based on multi-agent systems. In this problem, each agent can only access its own cost function and a convex set, and can only exchange local state information with its current neighbors through a time-varying digraph. In addition, the agents do not have access to the information about the current cost functions until decisions are made. Different from most existing works on online distributed optimization, here we consider the case where the cost functions are strongly pseudoconvex and real gradients of the cost functions are not available. To handle this problem, a random gradient-free online distributed algorithm involving the multi-point gradient estimator is proposed. Of particular interest is that under the proposed algorithm, each agent only uses the estimation information of gradients instead of the real gradient information to make decisions. The dynamic regret is employed to measure the proposed algorithm. We prove that if the cumulative deviation of the minimizer sequence grows within a certain rate, then the expectation of dynamic regret increases sublinearly. Finally, a simulation example is given to corroborate the validity of our results. 展开更多
关键词 Multi-agent system Online distributed optimization pseudoconvex optimization Random gradient-free method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部