Currently,there is a growing trend among users to store their data in the cloud.However,the cloud is vulnerable to persistent data corruption risks arising from equipment failures and hacker attacks.Additionally,when ...Currently,there is a growing trend among users to store their data in the cloud.However,the cloud is vulnerable to persistent data corruption risks arising from equipment failures and hacker attacks.Additionally,when users perform file operations,the semantic integrity of the data can be compromised.Ensuring both data integrity and semantic correctness has become a critical issue that requires attention.We introduce a pioneering solution called Sec-Auditor,the first of its kind with the ability to verify data integrity and semantic correctness simultaneously,while maintaining a constant communication cost independent of the audited data volume.Sec-Auditor also supports public auditing,enabling anyone with access to public information to conduct data audits.This feature makes Sec-Auditor highly adaptable to open data environments,such as the cloud.In Sec-Auditor,users are assigned specific rules that are utilized to verify the accuracy of data semantic.Furthermore,users are given the flexibility to update their own rules as needed.We conduct in-depth analyses of the correctness and security of Sec-Auditor.We also compare several important security attributes with existing schemes,demonstrating the superior properties of Sec-Auditor.Evaluation results demonstrate that even for time-consuming file upload operations,our solution is more efficient than the comparison one.展开更多
The remote data integrity auditing technology can guarantee the integrity of outsourced data in clouds. Users can periodically run an integrity auditing protocol by interacting with cloud server, to verify the latest ...The remote data integrity auditing technology can guarantee the integrity of outsourced data in clouds. Users can periodically run an integrity auditing protocol by interacting with cloud server, to verify the latest status of outsourced data. Integrity auditing requires user to take massive time-consuming computations, which would not be affordable by weak devices. In this paper, we propose a privacy-preserving TPA-aided remote data integrity auditing scheme based on Li et al.’s data integrity auditing scheme without bilinear pairings, where a third party auditor (TPA) is employed to perform integrity auditing on outsourced data for users. The privacy of outsourced data can be guaranteed against TPA in the sense that TPA could not infer its contents from the returned proofs in the integrity auditing phase. Our construction is as efficient as Li et al.’s scheme, that is, each procedure takes the same time-consuming operations in both schemes, and our solution does not increase the sizes of processed data, challenge and proof.展开更多
Cloud computing and storage services allow clients to move their data center and applications to centralized large data centers and thus avoid the burden of local data storage and maintenance.However,this poses new ch...Cloud computing and storage services allow clients to move their data center and applications to centralized large data centers and thus avoid the burden of local data storage and maintenance.However,this poses new challenges related to creating secure and reliable data storage over unreliable service providers.In this study,we address the problem of ensuring the integrity of data storage in cloud computing.In particular,we consider methods for reducing the burden of generating a constant amount of metadata at the client side.By exploiting some good attributes of the bilinear group,we can devise a simple and efficient audit service for public verification of untrusted and outsourced storage,which can be important for achieving widespread deployment of cloud computing.Whereas many prior studies on ensuring remote data integrity did not consider the burden of generating verification metadata at the client side,the objective of this study is to resolve this issue.Moreover,our scheme also supports data dynamics and public verifiability.Extensive security and performance analysis shows that the proposed scheme is highly efficient and provably secure.展开更多
Storage auditing and client-side deduplication techniques have been proposed to assure data integrity and improve storage efficiency, respectively. Recently, a few schemes start to consider these two different aspects...Storage auditing and client-side deduplication techniques have been proposed to assure data integrity and improve storage efficiency, respectively. Recently, a few schemes start to consider these two different aspects together. However, these schemes either only support plaintext data file or have been proved insecure. In this paper, we propose a public auditing scheme for cloud storage systems, in which deduplication of encrypted data and data integrity checking can be achieved within the same framework. The cloud server can correctly check the ownership for new owners and the auditor can correctly check the integrity of deduplicated data. Our scheme supports deduplication of encrypted data by using the method of proxy re-encryption and also achieves deduplication of data tags by aggregating the tags from different owners. The analysis and experiment results show that our scheme is provably secure and efficient.展开更多
We introduce a model for provable data possession (PDP) which allows a client that has stored data at an untrusted server to verify that the server possesses the original data without retrieving it. In a previous work...We introduce a model for provable data possession (PDP) which allows a client that has stored data at an untrusted server to verify that the server possesses the original data without retrieving it. In a previous work, Ateniese et al. proposed a remote data integrity checking protocol that supports data partial dynamics. In this paper, we present a new remote data possession checking protocol which allows an unlimited number of file integrity verifications and efficiently supports dynamic operations, such as data modification, deletion, insertion and append. The proposed protocol supports public verifiability. In addition, the proposed protocol does not leak any private information to third-party verifiers. Through a specific analysis, we show the correctness and security of the protocol. After that, we demonstrate the proposed protocol has a good performance.展开更多
作为云存储安全的重要问题,数据完整性验证技术受到学术界和工业界的广泛关注.为了验证云端数据完整性,研究者提出了多个数据完整性公开审计模型.然而,现有的数据完整性审计模型采用固定参数审计所有文件,浪费了大量计算资源,导致系统...作为云存储安全的重要问题,数据完整性验证技术受到学术界和工业界的广泛关注.为了验证云端数据完整性,研究者提出了多个数据完整性公开审计模型.然而,现有的数据完整性审计模型采用固定参数审计所有文件,浪费了大量计算资源,导致系统审计效率不高.为了提高系统的审计效率,提出了一种自适应数据持有性证明方法(self-adaptive provable data possession,SA-PDP),该方法基于文件属性和用户需求动态调整文件的审计方案,使得文件的审计需求和审计方案的执行强度高度匹配.为了增强审计方案更新的灵活性,依据不同的审计需求发起者,设计了2种审计方案动态更新算法.主动更新算法保证了审计系统的覆盖率,而被动更新算法能够及时满足文件的审计需求.实验结果表明:相较于传统方法,SA-PDP的审计总执行时间至少减少了50%,有效增加了系统审计文件的数量.此外,SAPDP方法生成的审计方案的达标率比传统审计方法提高了30%.展开更多
基金This research was supported by the Qinghai Provincial High-End Innovative and Entrepreneurial Talents Project.
文摘Currently,there is a growing trend among users to store their data in the cloud.However,the cloud is vulnerable to persistent data corruption risks arising from equipment failures and hacker attacks.Additionally,when users perform file operations,the semantic integrity of the data can be compromised.Ensuring both data integrity and semantic correctness has become a critical issue that requires attention.We introduce a pioneering solution called Sec-Auditor,the first of its kind with the ability to verify data integrity and semantic correctness simultaneously,while maintaining a constant communication cost independent of the audited data volume.Sec-Auditor also supports public auditing,enabling anyone with access to public information to conduct data audits.This feature makes Sec-Auditor highly adaptable to open data environments,such as the cloud.In Sec-Auditor,users are assigned specific rules that are utilized to verify the accuracy of data semantic.Furthermore,users are given the flexibility to update their own rules as needed.We conduct in-depth analyses of the correctness and security of Sec-Auditor.We also compare several important security attributes with existing schemes,demonstrating the superior properties of Sec-Auditor.Evaluation results demonstrate that even for time-consuming file upload operations,our solution is more efficient than the comparison one.
基金the National Natural Science Foundation of China under projects 61772150 and 61862012the Guangxi Key R&D Program under project AB17195025+3 种基金the Guangxi Natural Science Foundation under grants 2018GXNSFDA281054 and 2018GXNSFAA281232the National Cryptography Development Fund of China under project MMJJ20170217the Guangxi Young Teachers’ Basic Ability Improvement Program under Grant 2018KY0194and the open program of Guangxi Key Laboratory of Cryptography and Information Security under projects GCIS201621 and GCIS201702.
文摘The remote data integrity auditing technology can guarantee the integrity of outsourced data in clouds. Users can periodically run an integrity auditing protocol by interacting with cloud server, to verify the latest status of outsourced data. Integrity auditing requires user to take massive time-consuming computations, which would not be affordable by weak devices. In this paper, we propose a privacy-preserving TPA-aided remote data integrity auditing scheme based on Li et al.’s data integrity auditing scheme without bilinear pairings, where a third party auditor (TPA) is employed to perform integrity auditing on outsourced data for users. The privacy of outsourced data can be guaranteed against TPA in the sense that TPA could not infer its contents from the returned proofs in the integrity auditing phase. Our construction is as efficient as Li et al.’s scheme, that is, each procedure takes the same time-consuming operations in both schemes, and our solution does not increase the sizes of processed data, challenge and proof.
基金the National Natural Science Foundation of China,the National Basic Research Program of China ("973" Program) the National High Technology Research and Development Program of China ("863" Program)
文摘Cloud computing and storage services allow clients to move their data center and applications to centralized large data centers and thus avoid the burden of local data storage and maintenance.However,this poses new challenges related to creating secure and reliable data storage over unreliable service providers.In this study,we address the problem of ensuring the integrity of data storage in cloud computing.In particular,we consider methods for reducing the burden of generating a constant amount of metadata at the client side.By exploiting some good attributes of the bilinear group,we can devise a simple and efficient audit service for public verification of untrusted and outsourced storage,which can be important for achieving widespread deployment of cloud computing.Whereas many prior studies on ensuring remote data integrity did not consider the burden of generating verification metadata at the client side,the objective of this study is to resolve this issue.Moreover,our scheme also supports data dynamics and public verifiability.Extensive security and performance analysis shows that the proposed scheme is highly efficient and provably secure.
基金Supported by the National Natural Science Foundation of China(61373040,61173137)the Ph.D.Programs Foundation of Ministry of Education of China(20120141110002)the Key Project of Natural Science Foundation of Hubei Province(2010CDA004)
文摘Storage auditing and client-side deduplication techniques have been proposed to assure data integrity and improve storage efficiency, respectively. Recently, a few schemes start to consider these two different aspects together. However, these schemes either only support plaintext data file or have been proved insecure. In this paper, we propose a public auditing scheme for cloud storage systems, in which deduplication of encrypted data and data integrity checking can be achieved within the same framework. The cloud server can correctly check the ownership for new owners and the auditor can correctly check the integrity of deduplicated data. Our scheme supports deduplication of encrypted data by using the method of proxy re-encryption and also achieves deduplication of data tags by aggregating the tags from different owners. The analysis and experiment results show that our scheme is provably secure and efficient.
文摘We introduce a model for provable data possession (PDP) which allows a client that has stored data at an untrusted server to verify that the server possesses the original data without retrieving it. In a previous work, Ateniese et al. proposed a remote data integrity checking protocol that supports data partial dynamics. In this paper, we present a new remote data possession checking protocol which allows an unlimited number of file integrity verifications and efficiently supports dynamic operations, such as data modification, deletion, insertion and append. The proposed protocol supports public verifiability. In addition, the proposed protocol does not leak any private information to third-party verifiers. Through a specific analysis, we show the correctness and security of the protocol. After that, we demonstrate the proposed protocol has a good performance.
文摘作为云存储安全的重要问题,数据完整性验证技术受到学术界和工业界的广泛关注.为了验证云端数据完整性,研究者提出了多个数据完整性公开审计模型.然而,现有的数据完整性审计模型采用固定参数审计所有文件,浪费了大量计算资源,导致系统审计效率不高.为了提高系统的审计效率,提出了一种自适应数据持有性证明方法(self-adaptive provable data possession,SA-PDP),该方法基于文件属性和用户需求动态调整文件的审计方案,使得文件的审计需求和审计方案的执行强度高度匹配.为了增强审计方案更新的灵活性,依据不同的审计需求发起者,设计了2种审计方案动态更新算法.主动更新算法保证了审计系统的覆盖率,而被动更新算法能够及时满足文件的审计需求.实验结果表明:相较于传统方法,SA-PDP的审计总执行时间至少减少了50%,有效增加了系统审计文件的数量.此外,SAPDP方法生成的审计方案的达标率比传统审计方法提高了30%.