期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Performance Evaluation of Small-channel Pulsating Heat Pipe Based on Dimensional Analysis and ANN Model 被引量:1
1
作者 Xuehui Wang Edward Wright +2 位作者 Zeyu Liu Neng Gao Ying Li 《Energy Engineering》 EI 2022年第2期801-814,共14页
The pulsating heat pipe is a very promising heat dissipation device to address the challenge of higher heat-flux electronic chips,as it is characterised by excellent heat transfer ability and flexibility for miniaturi... The pulsating heat pipe is a very promising heat dissipation device to address the challenge of higher heat-flux electronic chips,as it is characterised by excellent heat transfer ability and flexibility for miniaturisation.To boost the application of PHP,reliable heat transfer performance evaluationmodels are especially important.In this paper,a heat transfer correlation was firstly proposed for closed PHP with various working fluids(water,ethanol,methanol,R123,acetone)based on collected experimental data.Dimensional analysis was used to group the parameters.It was shown that the average absolute deviation(AAD)and correlation coefficient(r)of the correlation were 40.67%and 0.7556,respectively.For 95%of the data,the prediction of thermal resistance and the temperature difference between evaporation and condensation section fell within 1.13K/Wand 40.76K,respectively.Meanwhile,an artificial neural networkmodelwas also proposed.The ANN model showed a better prediction accuracy with a mean square error(MSE)and correlation coefficient(r)of 7.88e-7 and 0.9821,respectively. 展开更多
关键词 pulsating heat pipe OSCILLATION heat transfer CORRELATION ANN model
下载PDF
Experimental Investigation of the Operating Characteristics of a Pulsating Heat Pipe with Ultra-Pure Water and Micro Encapsulated Phase Change Material Suspension
2
作者 SHI Weixiu SU Xiaoyang +1 位作者 CHEN Hongdi PAN Lisheng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第2期457-468,共12页
The specific heat capacity of working fluid is an important influence factor on heat transfer characteristic of the pulsating heat pipe(PHP).Due to the relatively large specific heat capacity of micro encapsulated pha... The specific heat capacity of working fluid is an important influence factor on heat transfer characteristic of the pulsating heat pipe(PHP).Due to the relatively large specific heat capacity of micro encapsulated phase change material(MEPCM) suspension,a heat transfer performance experimental facility of the PHP was established.The heat transfer characteristic with MEPCM suspension of different mass concentrations(0.5% and 1.0%) and ultra-pure water were compared experimentally.It was found that when the PHP uses MEPCM suspension as its working fluid,operating stability is impoverished under lower heating power and the operating stability is better under higher heating power.At the inclination angle of 90°,the temperature at heating side decreases compared to ultra-pure water and the temperature at heating side decreases with the raising of MEPCM suspension mass concentration.The heat transfer characteristic of the PHP is positively correlated with the inclination angle and the 90° is optimum.The unfavorable effect of the inclination angle decreases with heating power increasing.When the inclination angle is 90°,the PHP with MEPCM suspension at 1.0% of mass concentration has the lowest thermal transfer resistance and followed by ultra-pure water and MEPCM suspension at 0.5% of mass concentration has the highest thermal transfer resistance.When the inclination angles are 60° and30°,the effect of gravity on the flow direction is reduced to 86.6% and 50% of that on the inclination angle of 90°,respectively,and the promoting effect of gravity on the working fluid is further weakened as the inclination angle further decreases.Due to the high viscosity of MEPCM suspension,the PHP with ultra-pure water has the lowest heat transfer resistance.When the inclination angles is 60°,the thermal resistance with MEPCM suspension at0.5% of the mass concentration is lower than that at 1.0% at the heating power below 230 W.The thermal resistance of MEPCM suspension tends to be similar for heating power of 230-250 W.At the heating power above 270 W,the thermal resistance with MEPCM suspension at 1.0% of the mass concentration is lower than that at 0.5%. 展开更多
关键词 pulsating heat pipe(PHP) micro encapsulated phase change material(MEPCM) heat transfer characteristic inclination angle
原文传递
Evaporating Temperature Uniformity of the Pulsating Heat Pipe with Surfactant Solutions at Different Concentrations
3
作者 BAO Kangli WANG Xuehui +2 位作者 ZHANG Peng-E HAN Xiaohong TAN Jianming 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第1期183-191,共9页
The evaporating section of the pulsating heat pipe(PHP)is in direct contact with the electronics when it is used for heat dissipation,and thus the evaporating temperature uniformity has an important effect on the safe... The evaporating section of the pulsating heat pipe(PHP)is in direct contact with the electronics when it is used for heat dissipation,and thus the evaporating temperature uniformity has an important effect on the safe and reliable operation of electronic equipment.On the basis of these conditions,an experimental study on the evaporating temperature uniformity of the PHP with surfactant solutions at different concentrations was conducted at the heat fluxes of(1911–19427)W/m^(2).Sodium stearate was utilized for the solute;the surfactant solutions were prepared with the concentrations of 0.001 wt%,0.002 wt%,and 0.004 wt%,respectively,and the filling ratios of the PHP were 0.31,0.44 and 0.57,respectively.The experimental results revealed that under all tested working conditions,the highest temperature always appeared in the intermediate zone of the evaporating section.As the heat flux increased,the temperature differences among different zones rose initially and then reduced due to the change of the flow motion and the flow pattern.The evaporating temperature uniformity of the sodium stearate solutions-PHP was better than that of the deionized water-PHP,which suggested that the evaporating temperature uniformity might be improved through decreasing the surface tension.Furthermore,combined with the effect of surface tension and viscosity,for different filling ratios,the required concentration was different when the best evaporating temperature uniformity was achieved.To be specific,when the filling ratio were 0.31 and 0.44,the best evaporating temperature uniformity was achieved at the concentration of 0.004 wt%,while at the filling ratio of 0.57,the best evaporating temperature uniformity was attained at the concentration of 0.002 wt%. 展开更多
关键词 pulsating heat pipe surface tension evaporating temperature uniformity heat transfer
原文传递
Full visualization and startup performance of an ammonia pulsating heat pipe 被引量:3
4
作者 Zhihu Xue Wei Qu Minghui Xie 《Propulsion and Power Research》 SCIE 2013年第4期263-268,共6页
In this paper,a novel study on full visualization and startup performances of pulsating heat pipe using ammonia as working fluid are experimented.The tested pulsating heat pipe,consisting of 6 turns,is fully made of q... In this paper,a novel study on full visualization and startup performances of pulsating heat pipe using ammonia as working fluid are experimented.The tested pulsating heat pipe,consisting of 6 turns,is fully made of quartz glass tubes with 6 mm outer diameter and 2 mm inner diameter.The filling ratio is 70%.Wall temperature fluctuations of several key positions are recorded under a series charge of heat inputs.The visualization investigation is conducted to observe the oscillations and circulation flows with the advantage of high quality digital video camera,by which the unique thermodynamic behaviors are able to recognize and analyze more easily.The experimental results show that the startup power required by the ammonia Pulsating Heat Pipe(PHP)is very small,owing to particular identities of ammonia.It is observed that there are also some unevenly distributions in slug-train during initial and operating state.Phenomena such as circulation flows and local oscillations coupling breaking up of bubbles and formation of slugs are observed. 展开更多
关键词 pulsating heat pipe AMMONIA VISUALIZATION Startup performance OSCILLATION
原文传递
Visualization of Thermo-Hydrodynamic Behavior in Flat-Plate Pulsating Heat Pipe with HFE-347
5
作者 YAN Lipei ZHANG Ping +2 位作者 XU Hui MA Wei SHENG Jiang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第3期926-938,共13页
In this paper,the visualization of the thermo-hydrodynamic behavior in flat-plate pulsating heat pipe(FP-PHP)with HFE-347 is experimentally investigated.The FP-PHP is vertically placed with filling rate of 20%to 70%an... In this paper,the visualization of the thermo-hydrodynamic behavior in flat-plate pulsating heat pipe(FP-PHP)with HFE-347 is experimentally investigated.The FP-PHP is vertically placed with filling rate of 20%to 70%and heating power of 20 W to 140 W.A high-speed camera is used to record the two-phase flow in the FP-PHP.Four flow pattern types and four flow directions are observed.The flow directions of the two-phase flow inside the FP-PHP with medium filling rate(40%–60%)are the most complex,and the FP-PHP with high filling rate(70%)is most likely to form a directional circulating flow.At high heating power(100 W to 140 W),the flow patterns in FP-PHP with medium(40%–60%)and high filling rate(70%)are dominated by mixed flow.The wall temperature fluctuates greatly at moderate heating power(60 W to 80 W)owing to the uncertainty of the flow direction.The temperature distribution of the FP-PHP is highly affected by the heat transfer intensity of the working fluid under different flow states,so that the state of fluid flow and the thermal performance of FP-PHP can be evaluated through the infrared thermal image of the FP-PHP. 展开更多
关键词 flat-plate pulsating heat pipe HFE-347 VISUALIZATION thermal performance infrared thermal imaging
原文传递
Heat Leakage Numerical Investigation of a Compound Parabolic ConcentratorPulsating Heat Pipe Solar Collector
6
作者 XU Rongji CHEN Jingyan +2 位作者 ZHANG Xiaohui WANG Ruixiang XU Shuhui 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第5期1318-1326,共9页
As a new type of equipment for solar medium temperature utilization, the compound parabolic concentrator-pulsating heat pipe solar collector(CPC-PHPSC) uses pulsating heat pipe(PHP) as an endotherm, which can realize ... As a new type of equipment for solar medium temperature utilization, the compound parabolic concentrator-pulsating heat pipe solar collector(CPC-PHPSC) uses pulsating heat pipe(PHP) as an endotherm, which can realize efficient energy conversion. The design of proper concentration ratio of compound parabolic concentrator(CPC) ensures that the incident sunlight can be concentrated on the evaporator section surface of PHP without solar tracking system. The objective of the present work is to study the influence of solar radiation intensity, air speed, material thickness(glass and insulation board) and tilt angle on the thermal performance of the new collector, which is difficult to control in the experiment. The heat leakage process and characteristics of the CPC-PHPSC were numerically studied by establishing a 3D numerical model of the collector unit. The results show that the theoretical collector efficiency of CPC-PHPSC reaches 74.5%, which is consistent with the experimental results. During operation, the heat collection performance is the best when the tilt angle is 45° and the solar radiation intensity is 1000 W/m^(2), while the excessive air speed will increase the convective heat loss. Increasing the thickness of insulation board and glass has little effect on the collector efficiency. 展开更多
关键词 solar collector CPC(Compound Parabolic Concentrator) pulsating heat pipe solar irradiation intensity glass thickness
原文传递
Finite time thermodynamics analysis and research of pulsating heat pipe cold storage device
7
作者 Xiaofeng Xu Xuelai Zhang 《Energy Storage and Saving》 2022年第1期33-43,共11页
Phase change energy storage technology can effectively solve the energy mismatch in space and time.There are many disadvantages of phase change materials(PCMs),such as high supercooling,phase separation and poor heat ... Phase change energy storage technology can effectively solve the energy mismatch in space and time.There are many disadvantages of phase change materials(PCMs),such as high supercooling,phase separation and poor heat transfer performance.As a new type of heat exchange structure,pulsating heat pipe has the advantages of simple structure,high heat transfer coefficient and good economic behavior.The system efficiency can be greatly improved by using pulsating heat pipe combined with cold storage technology.A set of pulsating heat pipe type cold storage device is developed,the finite time thermodynamic analysis is carried out,and the correlation between heat pipe efficiency and power is established.The three-dimensional physical model of pulsating heat pipe is simulated and verified by experiments.The experimental results show that in the cold storage stage,with the increase of the filling rate,the greater the pressure is,the better the heat transfer effect is;in the cold release stage,with the decrease of the filling rate,the smaller the pressure is,the better the heat transfer effect is. 展开更多
关键词 Phase change energy storage pulsating heat pipe Finite time thermodynamics Liquid filling rate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部