[Objective] The aim was to carry out the quality research on a purple leaf mutant (PLM) of rice and provide the basis for applied research of purple rice.[Method] A newly discovered purple mutant of rice and its hyb...[Objective] The aim was to carry out the quality research on a purple leaf mutant (PLM) of rice and provide the basis for applied research of purple rice.[Method] A newly discovered purple mutant of rice and its hybrid filial generations (F1 and F2) were employed as the experimental materials to determine its characteristic indexes,such as grain type,chalky grain rate,chalkiness,1 000-grain weight,brown rice percentage,protein content,amylose content,gelatinization temperature and consistency.[Result] The grain type and brown rice percentage of the parent (pro-Z) both reached standard of Ⅰ Grade,while chalky grain rate,chalkiness,amylose content and consistency did not meet the requirements of the standard.The F2 generation displayed some optimized properties,including larger grain,lower amylose content,reduced chalkiness,lower chalky grain rate and softened consistency.[Conclusion] The majority of the characteristic indexes of pro-Z did not meet the requirements of standard,but the qualities of F2 generation were all optimized to some extent.展开更多
Learning hydrophobic phenomena from nature is always a promising approach to design the superhydrophobic surface.Purple orchid leaf which processes superhydrophobicity is an ideal plant model,and through mimicking its...Learning hydrophobic phenomena from nature is always a promising approach to design the superhydrophobic surface.Purple orchid leaf which processes superhydrophobicity is an ideal plant model,and through mimicking its structure,the surface with excellent hydrophobicity is able to be obtained.However,the unclear of the diversity in wettability during the different vegetation stages and the absence of its relation to the surface morphology limits the further enhancement of the inspired structure.Here,we analyze the wettability difference as the leaf grows from tender to mature and then to senescent.Combining with the variation of surface morphology and chemical composition,the well-developed micro-scale basic unit bumps with dense nano-scale waxy layer on the surface are proven to be responsible for the best hydrophobicity of the mature leaf.The presence of the undeveloped or damaged micro-nano hierarchical structure reduces the formation of air pockets at the interface,leading to the decrease of the wettability for leaves at other stages.Moreover,by fabricating artificial leaves,the nano-waxy layer is proved to be more effective than that of the micro-bumps on the surface wettability.The results of study are of a great significance for guiding the design and fabrication of plant-inspired bionic superhydrophobic surface.展开更多
文摘[Objective] The aim was to carry out the quality research on a purple leaf mutant (PLM) of rice and provide the basis for applied research of purple rice.[Method] A newly discovered purple mutant of rice and its hybrid filial generations (F1 and F2) were employed as the experimental materials to determine its characteristic indexes,such as grain type,chalky grain rate,chalkiness,1 000-grain weight,brown rice percentage,protein content,amylose content,gelatinization temperature and consistency.[Result] The grain type and brown rice percentage of the parent (pro-Z) both reached standard of Ⅰ Grade,while chalky grain rate,chalkiness,amylose content and consistency did not meet the requirements of the standard.The F2 generation displayed some optimized properties,including larger grain,lower amylose content,reduced chalkiness,lower chalky grain rate and softened consistency.[Conclusion] The majority of the characteristic indexes of pro-Z did not meet the requirements of standard,but the qualities of F2 generation were all optimized to some extent.
基金This work was financially supported by the National Key R&D Program of China(Grant No.2020YFB1711300)the National Natural Science Foundation of China(Grant No.52275425)the Natural Science Foundation of Guangdong Province for Distinguished Young Scholars(Grant No.2021B1515020087).
文摘Learning hydrophobic phenomena from nature is always a promising approach to design the superhydrophobic surface.Purple orchid leaf which processes superhydrophobicity is an ideal plant model,and through mimicking its structure,the surface with excellent hydrophobicity is able to be obtained.However,the unclear of the diversity in wettability during the different vegetation stages and the absence of its relation to the surface morphology limits the further enhancement of the inspired structure.Here,we analyze the wettability difference as the leaf grows from tender to mature and then to senescent.Combining with the variation of surface morphology and chemical composition,the well-developed micro-scale basic unit bumps with dense nano-scale waxy layer on the surface are proven to be responsible for the best hydrophobicity of the mature leaf.The presence of the undeveloped or damaged micro-nano hierarchical structure reduces the formation of air pockets at the interface,leading to the decrease of the wettability for leaves at other stages.Moreover,by fabricating artificial leaves,the nano-waxy layer is proved to be more effective than that of the micro-bumps on the surface wettability.The results of study are of a great significance for guiding the design and fabrication of plant-inspired bionic superhydrophobic surface.