The mixed-integer quadratically constrained quadratic fractional programming(MIQCQFP)problem often appears in various fields such as engineering practice,management science and network communication.However,most of th...The mixed-integer quadratically constrained quadratic fractional programming(MIQCQFP)problem often appears in various fields such as engineering practice,management science and network communication.However,most of the solutions to such problems are often designed for their unique circumstances.This paper puts forward a new global optimization algorithm for solving the problem MIQCQFP.We first convert the MIQCQFP into an equivalent generalized bilinear fractional programming(EIGBFP)problem with integer variables.Secondly,we linearly underestimate and linearly overestimate the quadratic functions in the numerator and the denominator respectively,and then give a linear fractional relaxation technique for EIGBFP on the basis of non-negative numerator.After that,combining rectangular adjustment-segmentation technique and midpointsampling strategy with the branch-and-bound procedure,an efficient algorithm for solving MIQCQFP globally is proposed.Finally,a series of test problems are given to illustrate the effectiveness,feasibility and other performance of this algorithm.展开更多
In this paper we study a Class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations of quadratic assignment problems. We show that each problem is polynomially solved. Str...In this paper we study a Class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations of quadratic assignment problems. We show that each problem is polynomially solved. Strong duality holds if a redundant constraint is introduced. As an application, a new lower bound is proposed for the quadratic assignment problem.展开更多
This paper focuses on the quadratic nonfragile filtering problem for linear non-Gaussian systems under multiplicative noises,multiple missing measurements as well as the dynamic event-triggered transmission scheme.The...This paper focuses on the quadratic nonfragile filtering problem for linear non-Gaussian systems under multiplicative noises,multiple missing measurements as well as the dynamic event-triggered transmission scheme.The multiple missing measurements are characterized through random variables that obey some given probability distributions,and thresholds of the dynamic event-triggered scheme can be adjusted dynamically via an auxiliary variable.Our attention is concentrated on designing a dynamic event-triggered quadratic nonfragile filter in the well-known minimum-variance sense.To this end,the original system is first augmented by stacking its state/measurement vectors together with second-order Kronecker powers,thus the original design issue is reformulated as that of the augmented system.Subsequently,we analyze statistical properties of augmented noises as well as high-order moments of certain random parameters.With the aid of two well-defined matrix difference equations,we not only obtain upper bounds on filtering error covariances,but also minimize those bounds via carefully designing gain parameters.Finally,an example is presented to explain the effectiveness of this newly established quadratic filtering algorithm.展开更多
The driven-dissipative Langevin dynamics simulation is used to produce a two-dimensional(2D) dense cloud, which is composed of charged dust particles trapped in a quadratic potential. A 2D mesh grid is built to analyz...The driven-dissipative Langevin dynamics simulation is used to produce a two-dimensional(2D) dense cloud, which is composed of charged dust particles trapped in a quadratic potential. A 2D mesh grid is built to analyze the center-to-wall dust density. It is found that the local dust density in the outer region relative to that of the inner region is more nonuniform,being consistent with the feature of quadratic potential. The dependences of the global dust density on equilibrium temperature, particle size, confinement strength, and confinement shape are investigated. It is found that the particle size, the confinement strength, and the confinement shape strongly affect the global dust density, while the equilibrium temperature plays a minor effect on it. In the direction where there is a stronger confinement, the dust density gradient is bigger.展开更多
The number and composition of species in a community can be quantified withα-diversity indices,including species richness(R),Simpson’s index(D),and the Shannon-Wiener index(H΄).In forest communities,there are large ...The number and composition of species in a community can be quantified withα-diversity indices,including species richness(R),Simpson’s index(D),and the Shannon-Wiener index(H΄).In forest communities,there are large variations in tree size among species and individu-als of the same species,which result in differences in eco-logical processes and ecosystem functions.However,tree size inequality(TSI)has been largely neglected in studies using the available diversity indices.The TSI in the diameter at breast height(DBH)data for each of 99920 m×20 m forest census quadrats was quantified using the Gini index(GI),a measure of the inequality of size distribution.The generalized performance equation was used to describe the rotated and right-shifted Lorenz curve of the cumulative proportion of DBH and the cumulative proportion of number of trees per quadrat.We also examined the relationships ofα-diversity indices with the GI using correlation tests.The generalized performance equation effectively described the rotated and right-shifted Lorenz curve of DBH distributions,with most root-mean-square errors(990 out of 999 quadrats)being<0.0030.There were significant positive correlations between each of threeα-diversity indices(i.e.,R,D,and H’)and the GI.Nevertheless,the total abundance of trees in each quadrat did not significantly influence the GI.This means that the TSI increased with increasing spe-cies diversity.Thus,two new indices are proposed that can balanceα-diversity against the extent of TSI in the com-munity:(1−GI)×D,and(1−GI)×H’.These new indices were significantly correlated with the original D and H΄,and did not increase the extent of variation within each group of indices.This study presents a useful tool for quantifying both species diversity and the variation in tree sizes in forest communities,especially in the face of cumulative species loss under global climate change.展开更多
This study presents a neural network-based model for predicting linear quadratic regulator(LQR)weighting matrices for achieving a target response reduction.Based on the expected weighting matrices,the LQR algorithm is...This study presents a neural network-based model for predicting linear quadratic regulator(LQR)weighting matrices for achieving a target response reduction.Based on the expected weighting matrices,the LQR algorithm is used to determine the various responses of the structure.The responses are determined by numerically analyzing the governing equation of motion using the state-space approach.For training a neural network,four input parameters are considered:the time history of the ground motion,the percentage reduction in lateral displacement,lateral velocity,and lateral acceleration,Output parameters are LQR weighting matrices.To study the effectiveness of an LQR-based neural network(LQRNN),the actual percentage reduction in the responses obtained from using LQRNN is compared with the target percentage reductions.Furthermore,to investigate the efficacy of an active control system using LQRNN,the controlled responses of a system are compared to the corresponding uncontrolled responses.The trained neural network effectively predicts weighting parameters that can provide a percentage reduction in displacement,velocity,and acceleration close to the target percentage reduction.Based on the simulation study,it can be concluded that significant response reductions are observed in the active-controlled system using LQRNN.Moreover,the LQRNN algorithm can replace conventional LQR control with the use of an active control system.展开更多
In this paper,we propose a doping approach to lower the error floor of Low-Density Parity-Check(LDPC)codes.The doping component is a short block code in which the information bits are selected from the coded bits of t...In this paper,we propose a doping approach to lower the error floor of Low-Density Parity-Check(LDPC)codes.The doping component is a short block code in which the information bits are selected from the coded bits of the dominant trapping sets of the LDPC code.Accordingly,an algorithm for selecting the information bits of the short code is proposed,and a specific two-stage decoding algorithm is presented.Simulation results demonstrate that the proposed doped LDPC code achieves up to 2.0 dB gain compared with the original LDPC code at a frame error rate of 10^(-6)Furthermore,the proposed design can lower the error floor of original LDPC Codes.展开更多
This paper studies a single degree of freedom system under free vibration and controlled by a general semiactive damping.A general integral of squared error is considered as the performance index.A one-time switching ...This paper studies a single degree of freedom system under free vibration and controlled by a general semiactive damping.A general integral of squared error is considered as the performance index.A one-time switching damping controller is proposed and optimized.The pontryagin maximum principle is used to prove that no other form of semi-active damping can provide the better performance than the proposed one-time switching damping.展开更多
This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By i...This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.展开更多
This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encounter...This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.展开更多
DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately por...DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately portray the electrical characteristics of actual MGs while is controller design-friendly has kept the issue active. To this end, this paper establishes a large-signal model containing the comprehensive dynamical behavior of the DC MGs based on the theory of high-order fully actuated systems, and proposes distributed optimal control based on this. The proposed secondary control method can achieve the two goals of voltage recovery and current sharing for multi-bus DC MGs. Additionally, the simple structure of the proposed approach is similar to one based on droop control, which allows this control technique to be easily implemented in a variety of modern microgrids with different configurations. In contrast to existing studies, the process of controller design in this paper is closely tied to the actual dynamics of the MGs. It is a prominent feature that enables engineers to customize the performance metrics of the system. In addition, the analysis of the stability of the closed-loop DC microgrid system, as well as the optimality and consensus of current sharing are given. Finally, a scaled-down solar and battery-based microgrid prototype with maximum power point tracking controller is developed in the laboratory to experimentally test the efficacy of the proposed control method.展开更多
Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of...Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.展开更多
The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Des...The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Despite the implementation of various control strategies to maintain equilibrium,optimally tuning control gains to effectively mitigate uncertain nonlinearities in system dynamics remains elusive.Existing methods frequently rely on extensive experimental data or the designer’s expertise,presenting a notable drawback.This paper proposes a novel tracking control approach for RIP,utilizing a Linear Quadratic Regulator(LQR)in combination with a reduced-order observer.Initially,the RIP system is mathematically modeled using the Newton-Euler-Lagrange method.Subsequently,a composite controller is devised that integrates an LQR for generating nominal control signals and a reduced-order observer for reconstructing unmeasured states.This approach enhances the controller’s robustness by eliminating differential terms from the observer,thereby attenuating unknown disturbances.Thorough numerical simulations and experimental evaluations demonstrate the system’s capability to maintain balance below50Hz and achieve precise tracking below1.4 rad,validating the effectiveness of the proposed control scheme.展开更多
This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve...This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.展开更多
In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communic...In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communication,and computing modules to support various requirements of robots.In the task process,different modules assist the robots to perform tasks in a closed-loop way,which is referred to as a sensing-communication-computing-control(SC3)loop.In this work,we investigate a UAV-aided system containing multiple SC^(3)loops,which leverages non-orthogonal multiple access(NOMA)for efficient resource sharing.We describe and compare three different modelling levels for the SC^(3)loop.Based on the entropy SC^(3)loop model,a sum linear quadratic regulator(LQR)control cost minimization problem is formulated by optimizing the communication power.Further for the assure-to-be-stable case,we show that the original problem can be approximated by a modified user fairness problem,and accordingly gain more insights into the optimal solutions.Simulation results demonstrate the performance gain of using NOMA in such task-oriented systems,as well as the superiority of our proposed closed-loop-oriented design.展开更多
City cluster is an effective platform for encouraging regionally coordinated development.Coordinated reduction of carbon emissions within city cluster via the spatial association network between cities can help coordi...City cluster is an effective platform for encouraging regionally coordinated development.Coordinated reduction of carbon emissions within city cluster via the spatial association network between cities can help coordinate the regional carbon emission management,realize sustainable development,and assist China in achieving the carbon peaking and carbon neutrality goals.This paper applies the improved gravity model and social network analysis(SNA)to the study of spatial correlation of carbon emissions in city clusters and analyzes the structural characteristics of the spatial correlation network of carbon emissions in the Yangtze River Delta(YRD)city cluster in China and its influencing factors.The results demonstrate that:1)the spatial association of carbon emissions in the YRD city cluster exhibits a typical and complex multi-threaded network structure.The network association number and density show an upward trend,indicating closer spatial association between cities,but their values remain generally low.Meanwhile,the network hierarchy and network efficiency show a downward trend but remain high.2)The spatial association network of carbon emissions in the YRD city cluster shows an obvious‘core-edge’distribution pattern.The network is centered around Shanghai,Suzhou and Wuxi,all of which play the role of‘bridges’,while cities such as Zhoushan,Ma'anshan,Tongling and other cities characterized by the remote location,single transportation mode or lower economic level are positioned at the edge of the network.3)Geographic proximity,varying levels of economic development,different industrial structures,degrees of urbanization,levels of technological innovation,energy intensities and environmental regulation are important influencing factors on the spatial association of within the YRD city cluster.Finally,policy implications are provided from four aspects:government macro-control and market mechanism guidance,structural characteristics of the‘core-edge’network,reconfiguration and optimization of the spatial layout of the YRD city cluster,and the application of advanced technologies.展开更多
The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first ...The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first order with respect to time.The derivation of the equations of continuum mechanics uses the limit transitions of the tendency of the volume increment and the time increment to zero.Derivatives are used to derive the wave equation.The differential wave equation is second order in time.Therefore,increments of volume and increments of time in continuum mechanics should be considered as small but finite quantities for problems of wave formation.This is important for calculating the generation of sound waves and water hammer waves.Therefore,the Euler continuity equation with finite time increments is of interest.The finiteness of the time increment makes it possible to take into account the quadratic and cubic invariants of the strain rate tensor.This is a new branch in hydrodynamics.Quadratic and cubic invariants will be used in differential wave equations of the second and third order in time.展开更多
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w...The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods.展开更多
The theory of quadratic residues plays an important role in cryptography.In 2001,Cocks developed an identity-based encryption(IBE)scheme based on quadratic residues,resolving Shamir’s 17-year-old open problem.However...The theory of quadratic residues plays an important role in cryptography.In 2001,Cocks developed an identity-based encryption(IBE)scheme based on quadratic residues,resolving Shamir’s 17-year-old open problem.However,a notable drawback of Cocks’scheme is the significant expansion of the ciphertext,and some of its limitations have been addressed in subsequent research.Recently,Cotan and Teşeleanu highlighted that previous studies on Cocks’scheme relied on a trial-and-error method based on Jacobi symbols to generate the necessary parameters for the encryption process.They enhanced the encryption speed of Cocks’scheme by eliminating this trialand-error method.Based on security analysis,this study concludes that the security of Cotan-Teşeleanu’s proposal cannot be directly derived from the security of the original Cocks’scheme.Furthermore,by adopting the Cotan-Teşeleanu method and introducing an additional variable as a public element,this study develops a similar enhancement scheme that not only accelerates the encryption speed but also provides security equivalent to the original Cocks’scheme.展开更多
基金supported by the National Natural Science Foundation of China(Grant 11961001)the construction project of first-class subjects in Ningxia Higher Education(Grant NXYLXK2017B09)by the major proprietary funded project of North Minzu University(Grant ZDZX201901).
文摘The mixed-integer quadratically constrained quadratic fractional programming(MIQCQFP)problem often appears in various fields such as engineering practice,management science and network communication.However,most of the solutions to such problems are often designed for their unique circumstances.This paper puts forward a new global optimization algorithm for solving the problem MIQCQFP.We first convert the MIQCQFP into an equivalent generalized bilinear fractional programming(EIGBFP)problem with integer variables.Secondly,we linearly underestimate and linearly overestimate the quadratic functions in the numerator and the denominator respectively,and then give a linear fractional relaxation technique for EIGBFP on the basis of non-negative numerator.After that,combining rectangular adjustment-segmentation technique and midpointsampling strategy with the branch-and-bound procedure,an efficient algorithm for solving MIQCQFP globally is proposed.Finally,a series of test problems are given to illustrate the effectiveness,feasibility and other performance of this algorithm.
基金Supported by the fundamental research funds for the central universities under grant YWF-10-02-021 and by National Natural Science Foundation of China under grant 11001006 The author is very grateful to all the three anonymous referees for their constructive criticisms and useful suggestions that help to improve the paper.
文摘In this paper we study a Class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations of quadratic assignment problems. We show that each problem is polynomially solved. Strong duality holds if a redundant constraint is introduced. As an application, a new lower bound is proposed for the quadratic assignment problem.
基金supported in part by the National Natural Science Foundation of China(61933007,U21A2019,U22A2044,61973102,62073180)the Natural Science Foundation of Shandong Province of China(ZR2021MF088)+1 种基金the Hainan Province Science and Technology Special Fund of China(ZDYF2022SHFZ105)the Royal Society of the UK,and the Alexander vonHumboldt Foundation of Germany。
文摘This paper focuses on the quadratic nonfragile filtering problem for linear non-Gaussian systems under multiplicative noises,multiple missing measurements as well as the dynamic event-triggered transmission scheme.The multiple missing measurements are characterized through random variables that obey some given probability distributions,and thresholds of the dynamic event-triggered scheme can be adjusted dynamically via an auxiliary variable.Our attention is concentrated on designing a dynamic event-triggered quadratic nonfragile filter in the well-known minimum-variance sense.To this end,the original system is first augmented by stacking its state/measurement vectors together with second-order Kronecker powers,thus the original design issue is reformulated as that of the augmented system.Subsequently,we analyze statistical properties of augmented noises as well as high-order moments of certain random parameters.With the aid of two well-defined matrix difference equations,we not only obtain upper bounds on filtering error covariances,but also minimize those bounds via carefully designing gain parameters.Finally,an example is presented to explain the effectiveness of this newly established quadratic filtering algorithm.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12275354 and 11805272)the Civil Aviation University of China (Grant No. 3122023PT08)。
文摘The driven-dissipative Langevin dynamics simulation is used to produce a two-dimensional(2D) dense cloud, which is composed of charged dust particles trapped in a quadratic potential. A 2D mesh grid is built to analyze the center-to-wall dust density. It is found that the local dust density in the outer region relative to that of the inner region is more nonuniform,being consistent with the feature of quadratic potential. The dependences of the global dust density on equilibrium temperature, particle size, confinement strength, and confinement shape are investigated. It is found that the particle size, the confinement strength, and the confinement shape strongly affect the global dust density, while the equilibrium temperature plays a minor effect on it. In the direction where there is a stronger confinement, the dust density gradient is bigger.
基金supported by the National Natural Science Foundation of China(32101260).
文摘The number and composition of species in a community can be quantified withα-diversity indices,including species richness(R),Simpson’s index(D),and the Shannon-Wiener index(H΄).In forest communities,there are large variations in tree size among species and individu-als of the same species,which result in differences in eco-logical processes and ecosystem functions.However,tree size inequality(TSI)has been largely neglected in studies using the available diversity indices.The TSI in the diameter at breast height(DBH)data for each of 99920 m×20 m forest census quadrats was quantified using the Gini index(GI),a measure of the inequality of size distribution.The generalized performance equation was used to describe the rotated and right-shifted Lorenz curve of the cumulative proportion of DBH and the cumulative proportion of number of trees per quadrat.We also examined the relationships ofα-diversity indices with the GI using correlation tests.The generalized performance equation effectively described the rotated and right-shifted Lorenz curve of DBH distributions,with most root-mean-square errors(990 out of 999 quadrats)being<0.0030.There were significant positive correlations between each of threeα-diversity indices(i.e.,R,D,and H’)and the GI.Nevertheless,the total abundance of trees in each quadrat did not significantly influence the GI.This means that the TSI increased with increasing spe-cies diversity.Thus,two new indices are proposed that can balanceα-diversity against the extent of TSI in the com-munity:(1−GI)×D,and(1−GI)×H’.These new indices were significantly correlated with the original D and H΄,and did not increase the extent of variation within each group of indices.This study presents a useful tool for quantifying both species diversity and the variation in tree sizes in forest communities,especially in the face of cumulative species loss under global climate change.
基金Dean Research&Consultancy under Grant No.Dean (R&C)/2020-21/1155。
文摘This study presents a neural network-based model for predicting linear quadratic regulator(LQR)weighting matrices for achieving a target response reduction.Based on the expected weighting matrices,the LQR algorithm is used to determine the various responses of the structure.The responses are determined by numerically analyzing the governing equation of motion using the state-space approach.For training a neural network,four input parameters are considered:the time history of the ground motion,the percentage reduction in lateral displacement,lateral velocity,and lateral acceleration,Output parameters are LQR weighting matrices.To study the effectiveness of an LQR-based neural network(LQRNN),the actual percentage reduction in the responses obtained from using LQRNN is compared with the target percentage reductions.Furthermore,to investigate the efficacy of an active control system using LQRNN,the controlled responses of a system are compared to the corresponding uncontrolled responses.The trained neural network effectively predicts weighting parameters that can provide a percentage reduction in displacement,velocity,and acceleration close to the target percentage reduction.Based on the simulation study,it can be concluded that significant response reductions are observed in the active-controlled system using LQRNN.Moreover,the LQRNN algorithm can replace conventional LQR control with the use of an active control system.
基金supported in part by China NSF under Grants No.61771081 and 62072064the Fundamental Research Funds for the Central Universities(China)under Grant cstc2019jcyjmsxmX0110+2 种基金the Project of Chongqing Natural Science Foundation under Grant CSTB2022NSCQ-MSX0990Science and Technology Research Project of Chongqing Education Commission under Grant KJQN202000612the Venture and Innovation Support Program for Chongqing Overseas Returnees under Grant cx2020070.
文摘In this paper,we propose a doping approach to lower the error floor of Low-Density Parity-Check(LDPC)codes.The doping component is a short block code in which the information bits are selected from the coded bits of the dominant trapping sets of the LDPC code.Accordingly,an algorithm for selecting the information bits of the short code is proposed,and a specific two-stage decoding algorithm is presented.Simulation results demonstrate that the proposed doped LDPC code achieves up to 2.0 dB gain compared with the original LDPC code at a frame error rate of 10^(-6)Furthermore,the proposed design can lower the error floor of original LDPC Codes.
基金supported by Vietnam Academy of Science and Technology(Grant No.VAST01.04/22-23)。
文摘This paper studies a single degree of freedom system under free vibration and controlled by a general semiactive damping.A general integral of squared error is considered as the performance index.A one-time switching damping controller is proposed and optimized.The pontryagin maximum principle is used to prove that no other form of semi-active damping can provide the better performance than the proposed one-time switching damping.
基金the National Natural Science Foundation of China(62273058,U22A2045)the Key Science and Technology Projects of Jilin Province(20200401075GX)the Youth Science and Technology Innovation and Entrepreneurship Outstanding Talents Project of Jilin Province(20230508043RC)。
文摘This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.
基金financially supported by the National Key R&D Program (2022YFB4201302)Guang Dong Basic and Applied Basic Research Foundation (2022A1515240057)the Huaneng Technology Funds (HNKJ20-H88).
文摘This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.
基金supported in part by the National Natural Science Foundation of China(62173255, 62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems,(ZDSYS20220330161800001)。
文摘DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately portray the electrical characteristics of actual MGs while is controller design-friendly has kept the issue active. To this end, this paper establishes a large-signal model containing the comprehensive dynamical behavior of the DC MGs based on the theory of high-order fully actuated systems, and proposes distributed optimal control based on this. The proposed secondary control method can achieve the two goals of voltage recovery and current sharing for multi-bus DC MGs. Additionally, the simple structure of the proposed approach is similar to one based on droop control, which allows this control technique to be easily implemented in a variety of modern microgrids with different configurations. In contrast to existing studies, the process of controller design in this paper is closely tied to the actual dynamics of the MGs. It is a prominent feature that enables engineers to customize the performance metrics of the system. In addition, the analysis of the stability of the closed-loop DC microgrid system, as well as the optimality and consensus of current sharing are given. Finally, a scaled-down solar and battery-based microgrid prototype with maximum power point tracking controller is developed in the laboratory to experimentally test the efficacy of the proposed control method.
基金Supported by the National Natural Science Foundation of China(12001395)the special fund for Science and Technology Innovation Teams of Shanxi Province(202204051002018)+1 种基金Research Project Supported by Shanxi Scholarship Council of China(2022-169)Graduate Education Innovation Project of Taiyuan Normal University(SYYJSYC-2314)。
文摘Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.
基金supported in part by the Youth Foundation of China University of Petroleum-Beijing at Karamay(under Grant No.XQZX20230038)the Karamay Innovative Talents Program(under Grant No.20212022HJCXRC0005).
文摘The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Despite the implementation of various control strategies to maintain equilibrium,optimally tuning control gains to effectively mitigate uncertain nonlinearities in system dynamics remains elusive.Existing methods frequently rely on extensive experimental data or the designer’s expertise,presenting a notable drawback.This paper proposes a novel tracking control approach for RIP,utilizing a Linear Quadratic Regulator(LQR)in combination with a reduced-order observer.Initially,the RIP system is mathematically modeled using the Newton-Euler-Lagrange method.Subsequently,a composite controller is devised that integrates an LQR for generating nominal control signals and a reduced-order observer for reconstructing unmeasured states.This approach enhances the controller’s robustness by eliminating differential terms from the observer,thereby attenuating unknown disturbances.Thorough numerical simulations and experimental evaluations demonstrate the system’s capability to maintain balance below50Hz and achieve precise tracking below1.4 rad,validating the effectiveness of the proposed control scheme.
基金the National Science and Tech-nology Council,Taiwan for their financial support(Grant Number NSTC 111-2221-E-019-048).
文摘This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFA0711301in part by the National Natural Science Foundation of China under Grant 62341110, Grant U22A2002, and Grant 62025110in part by the Suzhou Science and Technology Project
文摘In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communication,and computing modules to support various requirements of robots.In the task process,different modules assist the robots to perform tasks in a closed-loop way,which is referred to as a sensing-communication-computing-control(SC3)loop.In this work,we investigate a UAV-aided system containing multiple SC^(3)loops,which leverages non-orthogonal multiple access(NOMA)for efficient resource sharing.We describe and compare three different modelling levels for the SC^(3)loop.Based on the entropy SC^(3)loop model,a sum linear quadratic regulator(LQR)control cost minimization problem is formulated by optimizing the communication power.Further for the assure-to-be-stable case,we show that the original problem can be approximated by a modified user fairness problem,and accordingly gain more insights into the optimal solutions.Simulation results demonstrate the performance gain of using NOMA in such task-oriented systems,as well as the superiority of our proposed closed-loop-oriented design.
基金Under the auspices of the National Natural Science Foundation of China (No.72273151)。
文摘City cluster is an effective platform for encouraging regionally coordinated development.Coordinated reduction of carbon emissions within city cluster via the spatial association network between cities can help coordinate the regional carbon emission management,realize sustainable development,and assist China in achieving the carbon peaking and carbon neutrality goals.This paper applies the improved gravity model and social network analysis(SNA)to the study of spatial correlation of carbon emissions in city clusters and analyzes the structural characteristics of the spatial correlation network of carbon emissions in the Yangtze River Delta(YRD)city cluster in China and its influencing factors.The results demonstrate that:1)the spatial association of carbon emissions in the YRD city cluster exhibits a typical and complex multi-threaded network structure.The network association number and density show an upward trend,indicating closer spatial association between cities,but their values remain generally low.Meanwhile,the network hierarchy and network efficiency show a downward trend but remain high.2)The spatial association network of carbon emissions in the YRD city cluster shows an obvious‘core-edge’distribution pattern.The network is centered around Shanghai,Suzhou and Wuxi,all of which play the role of‘bridges’,while cities such as Zhoushan,Ma'anshan,Tongling and other cities characterized by the remote location,single transportation mode or lower economic level are positioned at the edge of the network.3)Geographic proximity,varying levels of economic development,different industrial structures,degrees of urbanization,levels of technological innovation,energy intensities and environmental regulation are important influencing factors on the spatial association of within the YRD city cluster.Finally,policy implications are provided from four aspects:government macro-control and market mechanism guidance,structural characteristics of the‘core-edge’network,reconfiguration and optimization of the spatial layout of the YRD city cluster,and the application of advanced technologies.
文摘The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first order with respect to time.The derivation of the equations of continuum mechanics uses the limit transitions of the tendency of the volume increment and the time increment to zero.Derivatives are used to derive the wave equation.The differential wave equation is second order in time.Therefore,increments of volume and increments of time in continuum mechanics should be considered as small but finite quantities for problems of wave formation.This is important for calculating the generation of sound waves and water hammer waves.Therefore,the Euler continuity equation with finite time increments is of interest.The finiteness of the time increment makes it possible to take into account the quadratic and cubic invariants of the strain rate tensor.This is a new branch in hydrodynamics.Quadratic and cubic invariants will be used in differential wave equations of the second and third order in time.
文摘The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods.
基金Rising-Star Program of Shanghai 2023 Science and Technology Innovation Action Plan(Yangfan Special Project),China(No.23YF1401000)Fundamental Research Funds for the Central Universities,China(No.2232022D-25)。
文摘The theory of quadratic residues plays an important role in cryptography.In 2001,Cocks developed an identity-based encryption(IBE)scheme based on quadratic residues,resolving Shamir’s 17-year-old open problem.However,a notable drawback of Cocks’scheme is the significant expansion of the ciphertext,and some of its limitations have been addressed in subsequent research.Recently,Cotan and Teşeleanu highlighted that previous studies on Cocks’scheme relied on a trial-and-error method based on Jacobi symbols to generate the necessary parameters for the encryption process.They enhanced the encryption speed of Cocks’scheme by eliminating this trialand-error method.Based on security analysis,this study concludes that the security of Cotan-Teşeleanu’s proposal cannot be directly derived from the security of the original Cocks’scheme.Furthermore,by adopting the Cotan-Teşeleanu method and introducing an additional variable as a public element,this study develops a similar enhancement scheme that not only accelerates the encryption speed but also provides security equivalent to the original Cocks’scheme.