Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model ba...Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model based on grey relation degree analysis to calibrate risk coefficients of DSF model. To solve the optimum solution, a genetic algorithm is employed. Finally, the DSF model is verified through a real-world driving experiment. Results show that the DSF model is consistent with driver's hazard perception and more sensitive than TTC. Moreover, the proposed DSF model offers a novel way for criticality assessment and decision-making of advanced driver assistance systems and intelligent connected vehicles.展开更多
Risk precontrol management system of coal mines safety( RPMSCS) provides a set of preventive safety management strategy for high-risk coal industries, which has captured extensive attentions. Fundamentally,there are s...Risk precontrol management system of coal mines safety( RPMSCS) provides a set of preventive safety management strategy for high-risk coal industries, which has captured extensive attentions. Fundamentally,there are several membership systems with subsystems in the management system, and the subsystem reliability has an important influence on the management system performance. Through analyzing the structure characteristics of the management system,the phase type distribution was employed to analyze its subsystem reliability by considering repair process and three states including working,fail-abnormal,and fail-emergency states. The reliability indices of the subsystem were derived respectively,including the probabilities that the subsystem in three states,mean time to the first failure, mean time to first failemergency,mean working time to first fail-emergency,and mean maintenance time to the first fail-emergency, are derived respectively. The probabilities of the membership systems and the management system in three states were also derived. Some numerical examples were used to show the procedures. The result is important for better understanding the management system operation and improving its operational performance from the respect of system reliability.展开更多
The paper is concerned with the development and application of the original probability models and supporting them software tools to predict and optimize quality and risks for complex systems. The examples demonstrate...The paper is concerned with the development and application of the original probability models and supporting them software tools to predict and optimize quality and risks for complex systems. The examples demonstrate possibilities to use modeling results from different application spheres and to go in making decision “from a pragmatical filtration of information to generation of the proved ideas and effective decisions”.展开更多
Quantified risk assessment(QRA) needs mathematicization of risk theory.However,attention has been paid almost exclusively to applications of assessment methods,which has led to neglect of research into fundamental the...Quantified risk assessment(QRA) needs mathematicization of risk theory.However,attention has been paid almost exclusively to applications of assessment methods,which has led to neglect of research into fundamental theories,such as the relationships among risk,safety,danger,and so on.In order to solve this problem,as a first step,fundamental theoretical relationships about risk and risk management were analyzed for this paper in the light of mathematics,and then illustrated with some charts.Second,man-machine-environment-management(MMEM) theory was introduced into risk theory to analyze some properties of risk.On the basis of this,a three-dimensional model of risk management was established that includes:a goal dimension;a management dimension;an operation dimension.This goal management operation(GMO) model was explained and then emphasis was laid on the discussion of the risk flowchart(operation dimension),which lays the groundwork for further study of risk management and qualitative and quantitative assessment.Next,the relationship between Formal Safety Assessment(FSA) and Risk Management was researched.This revealed that the FSA method,which the international maritime organization(IMO) is actively spreading,comes from Risk Management theory.Finally,conclusion were made about how to apply this risk management method to concrete fields efficiently and conveniently,as well as areas where further research is required.展开更多
A quantitative assessment method is proposed to sense the specific effects of atmospheric icing conditions on flight safety. A six degree-of-freedom computational flight dynamics model is used to study the effects of ...A quantitative assessment method is proposed to sense the specific effects of atmospheric icing conditions on flight safety. A six degree-of-freedom computational flight dynamics model is used to study the effects of ice accretion on aircraft dynamics, and a pilot model is also involved. In order to investigate icing severity under different icing conditions, support vector regression is applied in establishing relationship between aircraft icing parameter and weather conditions. Considering the characteristics of aircraft icing accidents, a risk probability assessment model optimized by the particle swarm method is developed to measure the safety level. In particular, angle of attack is chosen as a critical parameter in this method. Results presented in the paper for a series of simulation show that this method captures the basic effects of atmospheric icing conditions on flight safety, which may provide an important theoretical reference for icing accidents avoidance.展开更多
This study discusses the analysis of various modeling approaches such as genetic algorithms, fuzzy logic and evidential reasoning, and maintenance techniques applicable to the liquefied natural gas (LNG) carrier ope...This study discusses the analysis of various modeling approaches such as genetic algorithms, fuzzy logic and evidential reasoning, and maintenance techniques applicable to the liquefied natural gas (LNG) carrier operations in the maritime environment. The usefulness of these algorithms in the LNG carrier industry in the areas of risk assessment and maintenance modeling as a standalone or hybrid algorithm are identified. This is evidenced with illustrative case studies.展开更多
Safety is the highest priority in the mining industry as underground mining in particular poses high safety risks to its workers. In underground coal mines, coal bursts are one of the most catastrophic hazards, which ...Safety is the highest priority in the mining industry as underground mining in particular poses high safety risks to its workers. In underground coal mines, coal bursts are one of the most catastrophic hazards, which involves sudden and violent dynamic coal mass failure with rapid ejection of the broken material into the mine workings. Despite decades of research, the contributing mechanisms of coal bursts are still not completely understood. Hence, it remains challenging to forecast coal bursts and quantify their likelihood of occurrence. However, a range of geological and geotechnical factors are associated with coal bursts and can increase the coal burst proneness. This paper introduces a semi-quantitative coal burst risk classification system, namely, BurstRisk. Based on back-analysis of case histories from Australia, China and the United States, BurstRisk classifies the coal burst risk into three categories:low, medium and high risk. In addition, it allows mining engineers to modify the weighting of the selected factors based on specific conditions. The risk classification charts introduced are for both longwall retreat and development sections of long-wall mining operations. This paper also provides a set of risk management strategies and control measures for effective coal burst mitigation.展开更多
Regulations for the Supervision and Administration of Cosmetics was promulgated by the State Council on June 29,2020 and will take effect on January 1,2021.Compared with the previous Regulations on Health Supervision ...Regulations for the Supervision and Administration of Cosmetics was promulgated by the State Council on June 29,2020 and will take effect on January 1,2021.Compared with the previous Regulations on Health Supervision of Cosmetics,there are more items proposed for the safety of cosmetics.In this paper,the main changes of the safety supervision of cosmetics by comparing the“new”and“old”regulations were summarized with the potential influences on different groups(government,cosmetic enterprises and consumers)discussed.The important laws and regulations on cosmetic safety and risk assessment in China with recently added in vitro testing methods were summarized and the principal theory of cosmetic quantitative risk assessment was introduced.展开更多
In order to develop precision or personalized medicine,identifying new quantitative imaging markers and building machine learning models to predict cancer risk and prognosis has been attracting broad research interest...In order to develop precision or personalized medicine,identifying new quantitative imaging markers and building machine learning models to predict cancer risk and prognosis has been attracting broad research interest recently.Most of these research approaches use the similar concepts of the conventional computer-aided detection schemes of medical images,which include steps in detecting and segmenting suspicious regions or tumors,followed by training machine learning models based on the fusion of multiple image features computed from the segmented regions or tumors.However,due to the heterogeneity and boundary fuzziness of the suspicious regions or tumors,segmenting subtle regions is often difficult and unreliable.Additionally,ignoring global and/or background parenchymal tissue characteristics may also be a limitation of the conventional approaches.In our recent studies,we investigated the feasibility of developing new computer-aided schemes implemented with the machine learning models that are trained by global image features to predict cancer risk and prognosis.We trained and tested several models using images obtained from full-field digital mammography,magnetic resonance imaging,and computed tomography of breast,lung,and ovarian cancers.Study results showed that many of these new models yielded higher performance than other approaches used in current clinical practice.Furthermore,the computed global image features also contain complementary information from the features computed from the segmented regions or tumors in predicting cancer prognosis.Therefore,the global image features can be used alone to develop new case-based prediction models or can be added to current tumor-based models to increase their discriminatory power.展开更多
为了提高建筑施工安全风险管理的信息化水平,以建筑施工活动及事故风险类型为研究对象,建立施工安全知识图谱。通过知识图谱改进作业条件危险性评价法(LEC)实现安全风险的定量计算,并基于知识图谱进行风险位置识别和不安全因素分析。研...为了提高建筑施工安全风险管理的信息化水平,以建筑施工活动及事故风险类型为研究对象,建立施工安全知识图谱。通过知识图谱改进作业条件危险性评价法(LEC)实现安全风险的定量计算,并基于知识图谱进行风险位置识别和不安全因素分析。研究提出安全风险虚体实化理念,实现了安全风险信息在数字空间实体化表达;基于建筑信息模型(Building Information Modeling, BIM)和知识图谱技术,建立了建筑施工安全风险信息模型(Building Construction Safety Risk Information Model, BCSRIM)。该模型有效避免了传统LEC法中主观因素产生的影响,实现了建筑施工安全风险定量计算、风险位置识别、风险分析及可视化管理。利用Revit二次开发技术,在Microsoft Visual Studio中使用C#语言连接Neo4j图数据库,完成了基于知识图谱的BCSRIM的开发。试验显示,研究提出的BCSRIM对提高施工现场的管理水平具有较高的实用价值。展开更多
为了准确判断施工现场在突降暴雨情况下的安全状态,采用贝叶斯最优最劣法(Bayesian Best Worst Method,BBWM)和云模型方法,提出暴雨灾害下的建筑施工现场风险评价模型,以确定施工现场在遭受暴雨灾害时的风险等级。该模型利用了压力状态...为了准确判断施工现场在突降暴雨情况下的安全状态,采用贝叶斯最优最劣法(Bayesian Best Worst Method,BBWM)和云模型方法,提出暴雨灾害下的建筑施工现场风险评价模型,以确定施工现场在遭受暴雨灾害时的风险等级。该模型利用了压力状态响应模型(Pressure State Response,PSR)和灾害系统理论,在考虑致灾因子危险性、孕灾环境稳定性、承灾体脆弱性和减灾能力抵御性4方面的基础上,构建18个风险因素的施工现场风险评价指标体系,并以武汉市某施工现场为例进行验证。结果显示,施工现场的减灾能力抵御性处于最重要的地位,做好现场减灾应对措施对灾害有非常重要的帮助;案例项目的评价结果处于一般风险状态,与现场实际情况相符。展开更多
基金Projects(51475254,51625503)supported by the National Natural Science Foundation of ChinaProject(MCM20150302)supported by the Joint Project of Tsinghua and China Mobile,ChinaProject supported by the joint Project of Tsinghua and Daimler Greater China Ltd.,Beijing,China
文摘Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model based on grey relation degree analysis to calibrate risk coefficients of DSF model. To solve the optimum solution, a genetic algorithm is employed. Finally, the DSF model is verified through a real-world driving experiment. Results show that the DSF model is consistent with driver's hazard perception and more sensitive than TTC. Moreover, the proposed DSF model offers a novel way for criticality assessment and decision-making of advanced driver assistance systems and intelligent connected vehicles.
文摘Risk precontrol management system of coal mines safety( RPMSCS) provides a set of preventive safety management strategy for high-risk coal industries, which has captured extensive attentions. Fundamentally,there are several membership systems with subsystems in the management system, and the subsystem reliability has an important influence on the management system performance. Through analyzing the structure characteristics of the management system,the phase type distribution was employed to analyze its subsystem reliability by considering repair process and three states including working,fail-abnormal,and fail-emergency states. The reliability indices of the subsystem were derived respectively,including the probabilities that the subsystem in three states,mean time to the first failure, mean time to first failemergency,mean working time to first fail-emergency,and mean maintenance time to the first fail-emergency, are derived respectively. The probabilities of the membership systems and the management system in three states were also derived. Some numerical examples were used to show the procedures. The result is important for better understanding the management system operation and improving its operational performance from the respect of system reliability.
文摘The paper is concerned with the development and application of the original probability models and supporting them software tools to predict and optimize quality and risks for complex systems. The examples demonstrate possibilities to use modeling results from different application spheres and to go in making decision “from a pragmatical filtration of information to generation of the proved ideas and effective decisions”.
基金Supported by the Shanghai Leading Academic Discipline Project Foundation under Grant No.T0602Supported by the Shanghai Education Commission Project Foundation under Grant No.05FZ10
文摘Quantified risk assessment(QRA) needs mathematicization of risk theory.However,attention has been paid almost exclusively to applications of assessment methods,which has led to neglect of research into fundamental theories,such as the relationships among risk,safety,danger,and so on.In order to solve this problem,as a first step,fundamental theoretical relationships about risk and risk management were analyzed for this paper in the light of mathematics,and then illustrated with some charts.Second,man-machine-environment-management(MMEM) theory was introduced into risk theory to analyze some properties of risk.On the basis of this,a three-dimensional model of risk management was established that includes:a goal dimension;a management dimension;an operation dimension.This goal management operation(GMO) model was explained and then emphasis was laid on the discussion of the risk flowchart(operation dimension),which lays the groundwork for further study of risk management and qualitative and quantitative assessment.Next,the relationship between Formal Safety Assessment(FSA) and Risk Management was researched.This revealed that the FSA method,which the international maritime organization(IMO) is actively spreading,comes from Risk Management theory.Finally,conclusion were made about how to apply this risk management method to concrete fields efficiently and conveniently,as well as areas where further research is required.
文摘A quantitative assessment method is proposed to sense the specific effects of atmospheric icing conditions on flight safety. A six degree-of-freedom computational flight dynamics model is used to study the effects of ice accretion on aircraft dynamics, and a pilot model is also involved. In order to investigate icing severity under different icing conditions, support vector regression is applied in establishing relationship between aircraft icing parameter and weather conditions. Considering the characteristics of aircraft icing accidents, a risk probability assessment model optimized by the particle swarm method is developed to measure the safety level. In particular, angle of attack is chosen as a critical parameter in this method. Results presented in the paper for a series of simulation show that this method captures the basic effects of atmospheric icing conditions on flight safety, which may provide an important theoretical reference for icing accidents avoidance.
文摘This study discusses the analysis of various modeling approaches such as genetic algorithms, fuzzy logic and evidential reasoning, and maintenance techniques applicable to the liquefied natural gas (LNG) carrier operations in the maritime environment. The usefulness of these algorithms in the LNG carrier industry in the areas of risk assessment and maintenance modeling as a standalone or hybrid algorithm are identified. This is evidenced with illustrative case studies.
基金the support of The Australian Coal Association Research Program (ACARP)
文摘Safety is the highest priority in the mining industry as underground mining in particular poses high safety risks to its workers. In underground coal mines, coal bursts are one of the most catastrophic hazards, which involves sudden and violent dynamic coal mass failure with rapid ejection of the broken material into the mine workings. Despite decades of research, the contributing mechanisms of coal bursts are still not completely understood. Hence, it remains challenging to forecast coal bursts and quantify their likelihood of occurrence. However, a range of geological and geotechnical factors are associated with coal bursts and can increase the coal burst proneness. This paper introduces a semi-quantitative coal burst risk classification system, namely, BurstRisk. Based on back-analysis of case histories from Australia, China and the United States, BurstRisk classifies the coal burst risk into three categories:low, medium and high risk. In addition, it allows mining engineers to modify the weighting of the selected factors based on specific conditions. The risk classification charts introduced are for both longwall retreat and development sections of long-wall mining operations. This paper also provides a set of risk management strategies and control measures for effective coal burst mitigation.
文摘Regulations for the Supervision and Administration of Cosmetics was promulgated by the State Council on June 29,2020 and will take effect on January 1,2021.Compared with the previous Regulations on Health Supervision of Cosmetics,there are more items proposed for the safety of cosmetics.In this paper,the main changes of the safety supervision of cosmetics by comparing the“new”and“old”regulations were summarized with the potential influences on different groups(government,cosmetic enterprises and consumers)discussed.The important laws and regulations on cosmetic safety and risk assessment in China with recently added in vitro testing methods were summarized and the principal theory of cosmetic quantitative risk assessment was introduced.
基金The studies mentioned in this paper were supported in part by Grants R01 CA160205 and R01 CA197150 from the National Cancer Institute,National Institutes of Health,USAGrant HR15-016 from Oklahoma Center for the Advancement of Science and Technology,USA.
文摘In order to develop precision or personalized medicine,identifying new quantitative imaging markers and building machine learning models to predict cancer risk and prognosis has been attracting broad research interest recently.Most of these research approaches use the similar concepts of the conventional computer-aided detection schemes of medical images,which include steps in detecting and segmenting suspicious regions or tumors,followed by training machine learning models based on the fusion of multiple image features computed from the segmented regions or tumors.However,due to the heterogeneity and boundary fuzziness of the suspicious regions or tumors,segmenting subtle regions is often difficult and unreliable.Additionally,ignoring global and/or background parenchymal tissue characteristics may also be a limitation of the conventional approaches.In our recent studies,we investigated the feasibility of developing new computer-aided schemes implemented with the machine learning models that are trained by global image features to predict cancer risk and prognosis.We trained and tested several models using images obtained from full-field digital mammography,magnetic resonance imaging,and computed tomography of breast,lung,and ovarian cancers.Study results showed that many of these new models yielded higher performance than other approaches used in current clinical practice.Furthermore,the computed global image features also contain complementary information from the features computed from the segmented regions or tumors in predicting cancer prognosis.Therefore,the global image features can be used alone to develop new case-based prediction models or can be added to current tumor-based models to increase their discriminatory power.
文摘为了提高建筑施工安全风险管理的信息化水平,以建筑施工活动及事故风险类型为研究对象,建立施工安全知识图谱。通过知识图谱改进作业条件危险性评价法(LEC)实现安全风险的定量计算,并基于知识图谱进行风险位置识别和不安全因素分析。研究提出安全风险虚体实化理念,实现了安全风险信息在数字空间实体化表达;基于建筑信息模型(Building Information Modeling, BIM)和知识图谱技术,建立了建筑施工安全风险信息模型(Building Construction Safety Risk Information Model, BCSRIM)。该模型有效避免了传统LEC法中主观因素产生的影响,实现了建筑施工安全风险定量计算、风险位置识别、风险分析及可视化管理。利用Revit二次开发技术,在Microsoft Visual Studio中使用C#语言连接Neo4j图数据库,完成了基于知识图谱的BCSRIM的开发。试验显示,研究提出的BCSRIM对提高施工现场的管理水平具有较高的实用价值。
文摘为了准确判断施工现场在突降暴雨情况下的安全状态,采用贝叶斯最优最劣法(Bayesian Best Worst Method,BBWM)和云模型方法,提出暴雨灾害下的建筑施工现场风险评价模型,以确定施工现场在遭受暴雨灾害时的风险等级。该模型利用了压力状态响应模型(Pressure State Response,PSR)和灾害系统理论,在考虑致灾因子危险性、孕灾环境稳定性、承灾体脆弱性和减灾能力抵御性4方面的基础上,构建18个风险因素的施工现场风险评价指标体系,并以武汉市某施工现场为例进行验证。结果显示,施工现场的减灾能力抵御性处于最重要的地位,做好现场减灾应对措施对灾害有非常重要的帮助;案例项目的评价结果处于一般风险状态,与现场实际情况相符。