A differential approach for self-optimizing diffusion Monte Carlo calculation was proposed in this paper, which is a new algorithm combining three techniques such as optimizing, diffusion and correlation sampling. Thi...A differential approach for self-optimizing diffusion Monte Carlo calculation was proposed in this paper, which is a new algorithm combining three techniques such as optimizing, diffusion and correlation sampling. This method can be used to directly compute the energy differential between two system in the diffusion process, making the statistical error of calculation be reduced to Order of 10?-5 hartree, and recover about more than 80% of the correlation. We employed this approach to set up a potential energy surface of a molecule, used a “rigid move” model, and utilized Jacobi transformation to make energy calculation for two configurations of a molecule having good positive correlation. So, an accurate energy differential could be obtained, and the potential energy surface with good quality can be depicted. In calculation, a technique called “post-equilibrium remaining sample” was set up firstly, which can save about 50% of computation expense. This novel algorithm was used to study the potential as molecular spectroscopy and the energy variation in chemical reactions.展开更多
Considering the ocean water's optical attenuation and the roughness of the sea surface, we analyze the security of continuous-variable (CV) quantum key distribution (QKD) based Mr-to-water channel. The effects of...Considering the ocean water's optical attenuation and the roughness of the sea surface, we analyze the security of continuous-variable (CV) quantum key distribution (QKD) based Mr-to-water channel. The effects of the absorp- tion and scattering on the transmittance of underwater quantum channel and the maximum secure transmission distance are studied. Considering the roughness of the sea surface, we simulate the performance bounds of CV QKD with different wind speeds using the Monte Carlo method. The results show that even if the secret key rate gradually reduces as the wind speed increases, the maximum transmission distance will not be affected obviously. Compared to the works regarding short-distance underwater optical communication, our research represents a significant step towards establishing secure communication between air platform and submarine vehicle.展开更多
The quantum phase of hard-core bosons in Creutz ladder with zero flux is studied. For a specific regime of the parameters (tx = tp,ty 〈 0), the exact ground-state is found analytically, which is a dimerized insulat...The quantum phase of hard-core bosons in Creutz ladder with zero flux is studied. For a specific regime of the parameters (tx = tp,ty 〈 0), the exact ground-state is found analytically, which is a dimerized insulator with one electron bound in each rung of the ladder. For the case tx, ty, tp 〉 0, the system is exactly studied using quantum Monte Carlo (QMC) method without a sign problem. It is found that the system is a Mott insulator for small tp and a quantum phase transition to a superfluid phase is driven by increasing tp. The critical t~ is determined precisely by a scaling analysis. Since it is possible that the Creutz ladder is realized experimentally, the theoretical results are interesting to the cold-atom experiments.展开更多
In this paper we proposed a novel exact fixed-node quantum Monte Carlo (EFNQMC) algorithm, which is a self-optimizing and self-improving procedure. In contrast to the previous EFNQMC method, the trial function is opti...In this paper we proposed a novel exact fixed-node quantum Monte Carlo (EFNQMC) algorithm, which is a self-optimizing and self-improving procedure. In contrast to the previous EFNQMC method, the trial function is optimized synchronistically in the diffusion procedure, but not before the beginning of EFNQMC computation. In order to optimize the trial function, the improved steepest descent technique is used, in which the step size is automatically adjustable. The procedure is quasi-Newton and converges super linearly. We also use a novel trial function, which has correct electron-electron and electron-nucleus cusp conditions. The novel EFNQMC algorithm and the novel trial function are employed to calculate the energies of 11 A1 state of CH2, 1Ag state of C8 and the ground-states of H2, LiH, Li2, H2O, respectively. The test results show that both the novel algorithm and the trial function proposed in the present paper are very excellent.展开更多
In this paper, a novel method for fixed-node quantum Monte Carlo is given. We have derived an expansion of the eigenvalue of the energy for a system and proved that the value of the energy calculated using the tradit...In this paper, a novel method for fixed-node quantum Monte Carlo is given. We have derived an expansion of the eigenvalue of the energy for a system and proved that the value of the energy calculated using the traditional fixed-node quantum Monte Carlo method is only the zero order approximation of the eigenvalue of the energy. But when using our novel method, in the case of only increasing less computing amounts (<1%), we can obtain conveniently the first order approximation, second order approximation, and so on. We have calculated the values of the zero, first and second approximation (0, 1 and 2) of the energies of 11A1 state of CH2, 1Ag (C4h, acet) state of C8 and the ground-state of H2O using this novel method. The results indicate that for 11A1 state of CH2, 1Ag (C4h, acet) state of C8 and the ground-state of H2O it needs only the second order approximation to obtain electronic correlation energy with over 97%. This demonstrates that this novel method is very excellent in both the computing accuracy and the amount of calculation required.展开更多
In this paper, a novel exact fixed-node quantum Monte Carlo (EFNQMC) algorithm was proposed, which is a self-optimizing and self-improving procedure. In contrast to the previous EFNQMC method, the importance function ...In this paper, a novel exact fixed-node quantum Monte Carlo (EFNQMC) algorithm was proposed, which is a self-optimizing and self-improving procedure. In contrast to the previous EFNQMC method, the importance function of this method is optimized synchronistically in the diffusion procedure, but not before beginning the EFNQMC computation. In order to optimize the importance function, the improved steepest descent technique is used, in which the step size is automatically adjustable. The procedure is quasi-Newton type and converges super linearly. The present method also uses a novel trial function, which has correct electron-electron and electron-nucleus cusp conditions. The novel EFNQMC algorithm and the novel trial function are employed to calculate the energies of 1 1A 1 state of CH 2, 1A g state of C 8 and the ground-states of H 2, LiH, Li 2 and H 2O.展开更多
基金Project (No. 29773036) supperted by the National Natural Science Foundation of China.
文摘A differential approach for self-optimizing diffusion Monte Carlo calculation was proposed in this paper, which is a new algorithm combining three techniques such as optimizing, diffusion and correlation sampling. This method can be used to directly compute the energy differential between two system in the diffusion process, making the statistical error of calculation be reduced to Order of 10?-5 hartree, and recover about more than 80% of the correlation. We employed this approach to set up a potential energy surface of a molecule, used a “rigid move” model, and utilized Jacobi transformation to make energy calculation for two configurations of a molecule having good positive correlation. So, an accurate energy differential could be obtained, and the potential energy surface with good quality can be depicted. In calculation, a technique called “post-equilibrium remaining sample” was set up firstly, which can save about 50% of computation expense. This novel algorithm was used to study the potential as molecular spectroscopy and the energy variation in chemical reactions.
基金Supported by the National Natural Science Foundation of China under Grant No 61572529
文摘Considering the ocean water's optical attenuation and the roughness of the sea surface, we analyze the security of continuous-variable (CV) quantum key distribution (QKD) based Mr-to-water channel. The effects of the absorp- tion and scattering on the transmittance of underwater quantum channel and the maximum secure transmission distance are studied. Considering the roughness of the sea surface, we simulate the performance bounds of CV QKD with different wind speeds using the Monte Carlo method. The results show that even if the secret key rate gradually reduces as the wind speed increases, the maximum transmission distance will not be affected obviously. Compared to the works regarding short-distance underwater optical communication, our research represents a significant step towards establishing secure communication between air platform and submarine vehicle.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274032,11774019,51472016,and 51672018)
文摘The quantum phase of hard-core bosons in Creutz ladder with zero flux is studied. For a specific regime of the parameters (tx = tp,ty 〈 0), the exact ground-state is found analytically, which is a dimerized insulator with one electron bound in each rung of the ladder. For the case tx, ty, tp 〉 0, the system is exactly studied using quantum Monte Carlo (QMC) method without a sign problem. It is found that the system is a Mott insulator for small tp and a quantum phase transition to a superfluid phase is driven by increasing tp. The critical t~ is determined precisely by a scaling analysis. Since it is possible that the Creutz ladder is realized experimentally, the theoretical results are interesting to the cold-atom experiments.
文摘In this paper we proposed a novel exact fixed-node quantum Monte Carlo (EFNQMC) algorithm, which is a self-optimizing and self-improving procedure. In contrast to the previous EFNQMC method, the trial function is optimized synchronistically in the diffusion procedure, but not before the beginning of EFNQMC computation. In order to optimize the trial function, the improved steepest descent technique is used, in which the step size is automatically adjustable. The procedure is quasi-Newton and converges super linearly. We also use a novel trial function, which has correct electron-electron and electron-nucleus cusp conditions. The novel EFNQMC algorithm and the novel trial function are employed to calculate the energies of 11 A1 state of CH2, 1Ag state of C8 and the ground-states of H2, LiH, Li2, H2O, respectively. The test results show that both the novel algorithm and the trial function proposed in the present paper are very excellent.
基金This research work was supported by the National Natural Science Foundation of China(No.29773036)Science Foundation of the Education Committee of Hunan.
文摘In this paper, a novel method for fixed-node quantum Monte Carlo is given. We have derived an expansion of the eigenvalue of the energy for a system and proved that the value of the energy calculated using the traditional fixed-node quantum Monte Carlo method is only the zero order approximation of the eigenvalue of the energy. But when using our novel method, in the case of only increasing less computing amounts (<1%), we can obtain conveniently the first order approximation, second order approximation, and so on. We have calculated the values of the zero, first and second approximation (0, 1 and 2) of the energies of 11A1 state of CH2, 1Ag (C4h, acet) state of C8 and the ground-state of H2O using this novel method. The results indicate that for 11A1 state of CH2, 1Ag (C4h, acet) state of C8 and the ground-state of H2O it needs only the second order approximation to obtain electronic correlation energy with over 97%. This demonstrates that this novel method is very excellent in both the computing accuracy and the amount of calculation required.
基金theNationalNaturalScienceFoundationofChina (No .2 0 1730 14 )andScienceFoundationofHunanProvince
文摘In this paper, a novel exact fixed-node quantum Monte Carlo (EFNQMC) algorithm was proposed, which is a self-optimizing and self-improving procedure. In contrast to the previous EFNQMC method, the importance function of this method is optimized synchronistically in the diffusion procedure, but not before beginning the EFNQMC computation. In order to optimize the importance function, the improved steepest descent technique is used, in which the step size is automatically adjustable. The procedure is quasi-Newton type and converges super linearly. The present method also uses a novel trial function, which has correct electron-electron and electron-nucleus cusp conditions. The novel EFNQMC algorithm and the novel trial function are employed to calculate the energies of 1 1A 1 state of CH 2, 1A g state of C 8 and the ground-states of H 2, LiH, Li 2 and H 2O.