期刊文献+
共找到624篇文章
< 1 2 32 >
每页显示 20 50 100
Quantum-Inspired Particle Swarm Optimization Algorithm Encoded by Probability Amplitudes of Multi-Qubits
1
作者 Xin Li Huangfu Xu Xuezhong Guan 《Open Journal of Optimization》 2015年第2期21-30,共10页
To enhance the optimization ability of particle swarm algorithm, a novel quantum-inspired particle swarm optimization algorithm is proposed. In this method, the particles are encoded by the probability amplitudes of t... To enhance the optimization ability of particle swarm algorithm, a novel quantum-inspired particle swarm optimization algorithm is proposed. In this method, the particles are encoded by the probability amplitudes of the basic states of the multi-qubits system. The rotation angles of multi-qubits are determined based on the local optimum particle and the global optimal particle, and the multi-qubits rotation gates are employed to update the particles. At each of iteration, updating any qubit can lead to updating all probability amplitudes of the corresponding particle. The experimental results of some benchmark functions optimization show that, although its single step iteration consumes long time, the optimization ability of the proposed method is significantly higher than other similar algorithms. 展开更多
关键词 quantum Computing particle swarm Optimization Multi-Qubits PROBABILITY AMPLITUDES Encoding algorithm Design
下载PDF
Multiobjective optimal dispatch of microgrid based on analytic hierarchy process and quantum particle swarm optimization 被引量:7
2
作者 Yuxin Zhao Xiaotong Song +1 位作者 Fei Wang Dawei Cui 《Global Energy Interconnection》 CAS 2020年第6期562-570,共9页
Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispat... Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispatch model is developed for a standalone MG composed of wind turbines,photovoltaics,diesel engine unit,load,and battery energy storage system.The economic cost,environmental concerns,and power supply consistency are expressed via subobjectives with varying priorities.Then,the analytic hierarchy process algorithm is employed to reasonably specify the weight coefficients of the subobjectives.The quantum particle swarm optimization algorithm is thereafter employed as a solution to achieve optimal dispatch of the MG.Finally,the validity of the proposed model and solution methodology are con firmed by case studies.This study provides refere nee for mathematical model of multiojective optimizati on of MG and can be widely used in current research field. 展开更多
关键词 Analytic hierarchy process(AHP) quantum particle swarm optimization(qpso) Multiobjective optimal dispatch Microgrid.
下载PDF
基于QPSO-BP神经网络的矿井突水水源判识模型研究
3
作者 李迎雪 郑禄林 +3 位作者 杨爱莲 曾艳 石鑫 冉浪 《贵州大学学报(自然科学版)》 2025年第1期114-124,共11页
为厘清矿井水化学成分与矿井突水水源之间的非线性关系,实现突水来源的快速、准确判别。本研究提出了一种基于量子粒子群算法(quantum particle swarm optimization,QPSO)优化反向传播(back propagation,BP)神经网络的矿井突水水源判识... 为厘清矿井水化学成分与矿井突水水源之间的非线性关系,实现突水来源的快速、准确判别。本研究提出了一种基于量子粒子群算法(quantum particle swarm optimization,QPSO)优化反向传播(back propagation,BP)神经网络的矿井突水水源判识模型,并将该判识模型运用于黔北煤田龙凤矿区以验证其实用性。通过与BP模型、遗传算法(genetic algorithm,GA)优化的BP神经网络模型GA-BP、粒子群算法(particle swarm optimization,PSO)优化的BP神经网络模型PSO-BP、量子粒子群算法优化的支持向量机(support vector machine,SVM)模型QPSO-SVM和量子粒子群算法优化的随机森林(random forests,RF)模型QPSO-RF判识结果进行对比,结果表明,QPSO算法有效优化了BP神经网络模型性能,提升了模型收敛速度和分类精度;QPSO-BP模型相较于以上5种模型分类性能更佳,对突水水源分类判识的准确率达到了93.75%。以上结果表明,QPSO-BP模型在矿井突水水源判识上有更好的优越性和应用前景。 展开更多
关键词 矿井突水 水源识别 量子粒子群算法 BP神经网络 机器学习
下载PDF
Quantum-inspired swarm evolution algorithm
4
作者 HUANG You-rui TANG Chao-li WANG Shuang 《通讯和计算机(中英文版)》 2008年第5期36-39,共4页
关键词 量子计算 颗粒集群优化 进化算法 计算机技术
下载PDF
基于GA-QPSO-ELM的边坡位移组合预测
5
作者 傅嘉辉 张夫龙 +1 位作者 张学超 闫少霞 《自动化技术与应用》 2025年第1期53-56,共4页
为了提高水利工程边坡位移预测精度,在QPSO算法寻优过程中引入遗传算法的交叉和变异操作,形成GA-QPSO算法。采用GA-QPSO算法对ELM参数进行优化,建立基于GA-QPSO-ELM的边坡位移组合预测模型,采用实际水利工程的边坡位移监测数据进行仿真... 为了提高水利工程边坡位移预测精度,在QPSO算法寻优过程中引入遗传算法的交叉和变异操作,形成GA-QPSO算法。采用GA-QPSO算法对ELM参数进行优化,建立基于GA-QPSO-ELM的边坡位移组合预测模型,采用实际水利工程的边坡位移监测数据进行仿真分析,并与其他边坡位移预测方法进行对比。结果表明,GA-QPSO-ELM组合模型的平均相对误差为1.186%,预测精度高于其他方法,验证了模型的正确性和优越性。 展开更多
关键词 边坡位移 组合预测 极限学习机 遗传算法 量子粒子群算法
下载PDF
钻孔瞬变电磁法扫描探测RCQPSO-LMO组合算法2.5D反演 被引量:4
6
作者 程久龙 焦俊俊 +1 位作者 陈志 董毅 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第2期781-792,共12页
利用钻孔进行超前探测地质构造及含水体是地下开挖工程中的常规手段,如何利用这些钻孔进行钻孔瞬变电磁法扫描探测,从而实现钻孔孔壁外围地质异常体的精细探测,对实现地下工程地质透明化具有重要的指导意义.本文提出钻孔瞬变电磁法扫描... 利用钻孔进行超前探测地质构造及含水体是地下开挖工程中的常规手段,如何利用这些钻孔进行钻孔瞬变电磁法扫描探测,从而实现钻孔孔壁外围地质异常体的精细探测,对实现地下工程地质透明化具有重要的指导意义.本文提出钻孔瞬变电磁法扫描探测2.5D反演的数据解译方法,首先针对随机性反演算法时效性低,易陷入局部最优解,而确定性反演算法依赖初始模型的问题,提出了组合策略的量子粒子群优化算法用来随机搜索最优初始模型.在此基础上,利用Levenberg-Marquarat方法求解Occam反演的目标函数,形成了RCQPSO-LMO组合算法进行2.5D反演,通过对比组合算法和单一算法,验证了组合算法具有更精确的反演结果.其次结合屏蔽条件下扫描探测,对比分析了有无屏蔽的2.5D反演结果,通过设定屏蔽系数对非探测方向信号进行部分压制,可以较好地解决钻孔径向扫描探测中对非探测方向信号部分屏蔽下的反演及成像.最后建立三组理论模型进行组合算法2.5D反演,结果表明:组合算法反演结果与理论模型的一致性较好,对低阻异常体的反演精度较高,验证了组合算法对钻孔孔壁外围低阻异常体具有较高的反演精度和分辨能力. 展开更多
关键词 钻孔瞬变电磁法 扫描探测 量子粒子群优化算法 组合算法 2.5D反演
下载PDF
Optimal Planning of Charging Station for Electric Vehicle Based on Quantum PSO Algorithm 被引量:9
7
作者 LIU Zifa ZHANG Wei WANG Zeli 《中国电机工程学报》 EI CSCD 北大核心 2012年第22期I0006-I0006,共1页
关键词 电动汽车 粒子群算法 充电站 规划 优化 量子 能源 EV
原文传递
ACCQPSO:一种改进的量子粒子群优化算法及其应用
8
作者 孙隽丰 李成海 宋亚飞 《信息网络安全》 CSCD 北大核心 2024年第4期574-586,共13页
针对量子粒子群优化算法前期易陷入局部极值点、后期寻优精度不高等问题,文章提出一种自适应交叉算子的混沌量子粒子群优化算法,并将其应用于BP神经网络超参数寻优。首先,利用Logistics映射初始种群为混沌序列进行最优解搜索,增强初始... 针对量子粒子群优化算法前期易陷入局部极值点、后期寻优精度不高等问题,文章提出一种自适应交叉算子的混沌量子粒子群优化算法,并将其应用于BP神经网络超参数寻优。首先,利用Logistics映射初始种群为混沌序列进行最优解搜索,增强初始种群的随机性与遍历性,提高算法寻优能力;然后,通过纵向交叉操作进行种群中个体的信息交换,并引入自适应交叉概率公式,增加种群多样性,提高算法的寻优精度;最后,在实验中,一方面,选取8个函数在高低两个维度进行验证,同时进行Wilcoxon秩和检验分析以及消融实验,验证该算法相较其他算法的有效性;另一方面,通过算法优化BP神经网络应用到网络安全态势预测任务中,实验结果表明该算法收敛速度相较于对比算法有大幅度提升。 展开更多
关键词 量子粒子群优化算法 混沌映射 交叉算子 自适应调整策略 BP神经网络
下载PDF
基于IQPSO-GA优化ANFIS模型的服务器故障预警方法
9
作者 李盛新 叶丰华 +2 位作者 李道童 张秀波 韩红瑞 《计算机测量与控制》 2024年第4期37-45,共9页
针对服务器底层部分业务类硬件故障对系统稳定运行的影响,提出一种改进的量子行为粒子群优化(IQPSO)与遗传算法(GA)相结合的混合元启发式优化算法对自适应神经模糊推理系统(ANFIS)参数进行训练,以获得更准确的ANFIS规则进行硬件故障预... 针对服务器底层部分业务类硬件故障对系统稳定运行的影响,提出一种改进的量子行为粒子群优化(IQPSO)与遗传算法(GA)相结合的混合元启发式优化算法对自适应神经模糊推理系统(ANFIS)参数进行训练,以获得更准确的ANFIS规则进行硬件故障预警的方法;首先,通过分析服务器业务与硬件相关参数之间的映射关系,通过采集的数据集对ANFIS模型进行训练构造预测模型;其次,考虑ANFIS在梯度计算过程中存在容易陷入局部最优值的问题,设计了一种IQPSO算法结合GA中的交叉和变异算子操作混合元启发算法全局搜索ANFIS规则参数;最后,通过一组后处理样本数据集对所提方法有效性和稳定性进行了检验;实验结果表明,该方法可有效预警服务器硬件故障,基于所提混合元启发优化算法获得的ANFIS模型具备更快的收敛速度和更高的全局搜索精度,与传统ANFIS模型相比泛化精度提高了47%以上。 展开更多
关键词 服务器 故障预警 自适应神经模糊推理系统 量子行为粒子群优化算法 遗传算法
下载PDF
基于QPSO优化LSTM的锂离子电池荷电状态估计
10
作者 刘锐 朱培逸 《国外电子测量技术》 2024年第10期9-16,共8页
锂离子电池荷电状态(SoC)是电池管理系统的关键参数之一,针对单一长短期记忆(LSTM)网络估计精度不高的问题,提出量子粒子群(QPSO)优化的长短期神经网络,引入量子粒子群算法对LSTM神经网络模型关键参数进行优化,进而提高网络对SoC的估计... 锂离子电池荷电状态(SoC)是电池管理系统的关键参数之一,针对单一长短期记忆(LSTM)网络估计精度不高的问题,提出量子粒子群(QPSO)优化的长短期神经网络,引入量子粒子群算法对LSTM神经网络模型关键参数进行优化,进而提高网络对SoC的估计性能。此外,采用INR-18650电池数据集对所提出的模型进行测试,包含3种不同温度(0℃、25℃、45℃)和4种工况包括动态压力测试DST、联邦城市驾驶时间表FUDS,US06高速公路驾驶时间表和北京动态压力测试BJDST。最后,在各工况下分别验证模型性能,并与其他优化算法进行比较,验证结果表明,所提方法在各温度下均能提高模型的SoC估计结果,且不同温度4种工况下的均值绝对误差(MAE)均小于1%和均方根误差(RMSE)均小于1.1%,最大误差均在5%以内。 展开更多
关键词 荷电状态估 长短期记忆 量子粒子群优化算法 电池管理系统
原文传递
基于QPSO LSTM模型的锂电池剩余容量预测
11
作者 王丽玲 孙晓波 +2 位作者 宋树平 张敬 马明叶 《机械与电子》 2024年第9期52-56,64,共6页
为克服锂离子电池容量预测精度低的问题,提出了一种量子粒子群改进长短期记忆神经网络(QPSO LSTM)的电池容量预测技术。分析了量子粒子群改进(QPSO)和长短期记忆神经网络(LSTM)算法的基本原理,利用QPSO算法对LSTM模型神经元个数、学习... 为克服锂离子电池容量预测精度低的问题,提出了一种量子粒子群改进长短期记忆神经网络(QPSO LSTM)的电池容量预测技术。分析了量子粒子群改进(QPSO)和长短期记忆神经网络(LSTM)算法的基本原理,利用QPSO算法对LSTM模型神经元个数、学习率等主要超参数进行寻优,解决长时序数据预测精度差和预测模型超参数难以确定的问题,构建了QPSO LSTM模型。最后,以NASA电池为分析对象,分别采用QPSO LSTM、PSO LSTM、LSTM和GA BP这4种预测模型对2种不同型号的电池进行剩余容量预测,预测结果表明,QPSO LSTM模型预测精度高,误差在1.5%范围内,为电池剩余容量的预测提供了一种有效的方法。 展开更多
关键词 锂电池 容量预测 量子粒子群算法 LSTM神经网络
下载PDF
Quantum control based on three forms of Lyapunov functions
12
作者 俞国慧 杨洪礼 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期216-222,共7页
This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.S... This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.Stability is analyzed by the La Salle invariance principle and the numerical simulation is carried out in a 2D test system.The calculation process for the Lyapunov function is based on a combination of the average of virtual mechanical quantities, the particle swarm algorithm and a simulated annealing algorithm.Finally, a unified form of the control laws under the three forms is given. 展开更多
关键词 quantum system Lyapunov function particle swarm optimization simulated annealing algorithms quantum control
原文传递
基于特征重组与IQPSO-BILSTM-RF的短期风电功率预测
13
作者 王嘉琪 张玲华 胡枫 《软件导刊》 2024年第12期10-17,共8页
短期风电功率预测对电力系统正常运转至关重要,为了提升风电功率预测精度,提出基于特征重组方法和改进量子粒子群算法(IQPSO)优化双向长短期记忆网络(BILSTM)与随机森林(RF)的短期风电功率预测组合模型。首先,运用局部均值分解处理风电... 短期风电功率预测对电力系统正常运转至关重要,为了提升风电功率预测精度,提出基于特征重组方法和改进量子粒子群算法(IQPSO)优化双向长短期记忆网络(BILSTM)与随机森林(RF)的短期风电功率预测组合模型。首先,运用局部均值分解处理风电数据得到多个子分量,并计算其模糊熵以重组新特征分量。其次,采用IQPSO优化的BILSTM预测特征分量,将各分量结果叠加得到初步预测值。最后,使用IQPSO优化的RF对初步预测值进行误差修正。实验表明,该模型决定系数(R^(2))达到了0.99425,优于其他模型,消融实验也验证了各模块的必要性。 展开更多
关键词 风电功率预测 特征重组 改进量子粒子群优化算法 双向长短期记忆网络 随机森林 误差修正
下载PDF
基于QPSO改进LSTM发动机怠速预测的FPID控制
14
作者 赵晴 潘江如 +1 位作者 董恒祥 郭鸿鑫 《现代电子技术》 北大核心 2024年第8期75-82,共8页
以北京现代伊兰特G4GD发动机为试验台,将电控系统故障作为实验变量,测得规定时间内双传感器组合发生故障时的发动机怠速,并选原车ECU较难控制的6种组合怠速故障进行分析。基于量子粒子群算法(QPSO)对长短时记忆神经网络(LSTM)隐含层节... 以北京现代伊兰特G4GD发动机为试验台,将电控系统故障作为实验变量,测得规定时间内双传感器组合发生故障时的发动机怠速,并选原车ECU较难控制的6种组合怠速故障进行分析。基于量子粒子群算法(QPSO)对长短时记忆神经网络(LSTM)隐含层节点、训练次数与学习率进行寻优预测,将预测结果与多种神经网络进行对比,并通过均方根误差(RMSE)评价指标进行判断。使用Origin数据拟合将预测输出结果进行数值拟合,之后输入Matlab中使用Simulink搭建控制单元模型,由模糊常量-积分-微分(FPID)控制器对输出结果进行怠速控制。结果表明:基于量子粒子群算法改进的长短时记忆神经网络预测效果最好;模糊常量-积分-微分控制器对怠速的控制可有效缩短电子控制单元(ECU)的控制时间,无超调,且可有效调节至规定怠速。 展开更多
关键词 发动机怠速 量子粒子群优化算法 长短时记忆神经网络 模糊PID控制 故障分析 时间序列预测
下载PDF
考虑碳排放的铁路路基施工机群配置优化
15
作者 鲍学英 申中帅 +1 位作者 李子龙 吕向茹 《安全与环境学报》 北大核心 2025年第1期364-373,共10页
铁路路基施工机群配置关系施工工期,会直接产生施工成本,对生态环境造成重要影响,进而产生较高碳排放量。首先,考虑铁路路基施工工期、施工成本、施工绿色指数及碳排放等目标,建立铁路路基施工机群配置优化模型。其中,将施工机群配置优... 铁路路基施工机群配置关系施工工期,会直接产生施工成本,对生态环境造成重要影响,进而产生较高碳排放量。首先,考虑铁路路基施工工期、施工成本、施工绿色指数及碳排放等目标,建立铁路路基施工机群配置优化模型。其中,将施工机群配置优化模型中各优化目标作为一级指标建立机群配置多目标决策偏好评价指标体系,并将组合数有序加权算子(Combination Ordered Weighted Averaging,C-OWA)法与基于指标间相关性分析的权重确定(Criteria Importance Though Intercriteria Correlation,CRITIC)法结合对指标进行组合赋权。其次,采用基于莱维飞行机制的量子粒子群优化(Quantum Particle Swarm Optimization,QPSO)算法求解该施工机群配置优化模型。最后,以某铁路路基工程某标段为例进行实证分析。结果显示,多目标优化方案较原方案工期提前75 d,成本降低203.257万元,绿色指数提升5.250%,碳排放量降低1.305 t。研究结果可为铁路路基施工机群配置优化提供新思路。 展开更多
关键词 环境工程学 铁路路基机群配置 碳排放 组合数有序加权算子法 基于指标间相关性分析的权重确定法 基于莱维飞行的量子粒子群优化算法
原文传递
基于改进模糊支持向量回归模型的地震人员伤亡预测研究
16
作者 沈健 李梦瑶 《价值工程》 2025年第7期101-104,共4页
本文构建了地震人员伤亡预测指标体系,并采用主成分分析法(PCA)对数据进行降维处理。使用模糊支持向量回归(FSVR)模型减少噪声点对预测结果的影响,并采用模糊均值聚类(FCM)算法确定隶属度函数。此外,利用粒子群算法(PSO)进行寻优得到最... 本文构建了地震人员伤亡预测指标体系,并采用主成分分析法(PCA)对数据进行降维处理。使用模糊支持向量回归(FSVR)模型减少噪声点对预测结果的影响,并采用模糊均值聚类(FCM)算法确定隶属度函数。此外,利用粒子群算法(PSO)进行寻优得到最优FSVR参数,最终建立PSO-FSVR地震伤亡预测模型。 展开更多
关键词 地震伤亡预测 模糊支持向量回归 粒子群优化算法 主成分分析
下载PDF
基于多目标优化的装配式施工机械设备优化配置方法
17
作者 王宁 《佳木斯大学学报(自然科学版)》 2025年第2期142-145,共4页
提出了一种针对装配式建筑施工中机械设备配置问题的多目标优化方法,该方法通过建立一个整合了工期、成本和碳排放三个关键要素的综合优化模型,并运用无量纲化处理来协调这些目标之间的关系。这种方法基于一种改进的量子粒子群优化算法(... 提出了一种针对装配式建筑施工中机械设备配置问题的多目标优化方法,该方法通过建立一个整合了工期、成本和碳排放三个关键要素的综合优化模型,并运用无量纲化处理来协调这些目标之间的关系。这种方法基于一种改进的量子粒子群优化算法(Levy-QPSO),通过整合莱维飞行机制来提高搜索能力和防止陷入局部最优解。五个标准测试函数的实验结果证实了改进算法的有效性和优越性。本研究所提出的方法为装配式建筑施工机械设备的优化配置提供了一种实用工具,有助于实现低碳、高效及经济的施工机械设备管理。 展开更多
关键词 施工机械 装配式 多目标优化 量子粒群算法
下载PDF
基于QPSO-RBF的瓦斯涌出量预测模型 被引量:32
18
作者 潘玉民 邓永红 +1 位作者 张全柱 薛鹏骞 《中国安全科学学报》 CAS CSCD 北大核心 2012年第12期29-34,共6页
为了提高径向基(RBF)网络预测瓦斯涌出量的泛化能力,提出QPSO-RBF模型。该模型采用量子粒子群(QPSO)算法优化RBF网络隐层基函数中心、扩展系数以及输出权等初始参数,将网络参数编码为QPSO学习算法中的粒子个体,在全局空间中搜索最优适... 为了提高径向基(RBF)网络预测瓦斯涌出量的泛化能力,提出QPSO-RBF模型。该模型采用量子粒子群(QPSO)算法优化RBF网络隐层基函数中心、扩展系数以及输出权等初始参数,将网络参数编码为QPSO学习算法中的粒子个体,在全局空间中搜索最优适应值参数。其中,RBF网络选取5-3-1的精简结构,采用5个变量作为影响因子预测瓦斯涌出量。结果表明,经QPSO优化后的RBF网络模型预测结果稳定且唯一,其泛化指标平均相对变动值(ARV)为0.012 2。与PSO-RBF、RBF模型预测结果比较,QPSO-RBF模型的泛化能力和网络训练速度优于前2种;预测精度约为PSO-RBF模型的1.5倍、RBF模型的4倍。 展开更多
关键词 量子粒子群(qpso)算法 径向基(RBF) qpso-RBF模型 泛化能力 瓦斯涌出量
原文传递
基于QPSO算法的RBF神经网络参数优化仿真研究 被引量:24
19
作者 陈伟 冯斌 孙俊 《计算机应用》 CSCD 北大核心 2006年第8期1928-1931,共4页
针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种以量子粒子群优化(QPSO)算法为基础的RBF神经网络训练算法,将RBF神经网络的参数组成一个多维向量,作为算法中的粒子进行进化,由此在可行解空间范围内搜索最优解... 针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种以量子粒子群优化(QPSO)算法为基础的RBF神经网络训练算法,将RBF神经网络的参数组成一个多维向量,作为算法中的粒子进行进化,由此在可行解空间范围内搜索最优解。实例仿真表明,该学习算法相比于传统的学习算法计算简单,收敛速度快,并由于其算法模型的自身特性比基于PSO的学习算法具有更好的全局收敛性能。 展开更多
关键词 粒子群优化算法 量子粒子群优化算法 径向基函数神经网络
下载PDF
基于QPSO的数据聚类 被引量:14
20
作者 龙海侠 须文波 孙俊 《计算机应用研究》 CSCD 北大核心 2006年第12期40-42,45,共4页
在K-Means聚类、PSO聚类、K-Means和PSO混合聚类(KPSO)的基础上,研究了基于量子行为的微粒群优化算法(QPSO)的数据聚类方法,并提出利用K-Means聚类的结果重新初始化粒子群,结合QPSO的聚类算法,即KQPSO。介绍了如何利用上述算法找到用户... 在K-Means聚类、PSO聚类、K-Means和PSO混合聚类(KPSO)的基础上,研究了基于量子行为的微粒群优化算法(QPSO)的数据聚类方法,并提出利用K-Means聚类的结果重新初始化粒子群,结合QPSO的聚类算法,即KQPSO。介绍了如何利用上述算法找到用户指定的聚类个数的聚类中心。聚类过程都是根据数据之间的Euclidean(欧几里得)距离。K-Means算法、PSO算法和QPSO算法的不同在于聚类中心向量的“进化”上。最后使用三个数据集比较了上面提到的五种聚类方法的性能,结果显示基于QPSO算法的数据聚类性能比一般PSO算法更好。 展开更多
关键词 聚类 K—Means PSO qpso 聚类中心
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部