The binding energy and the photon energy dependence of the photoionization cross-section are calculated for a hydrogenic impurity in GaAs/Ga 1-xAl xAs quantum well wires.The correlation between confined and non-co...The binding energy and the photon energy dependence of the photoionization cross-section are calculated for a hydrogenic impurity in GaAs/Ga 1-xAl xAs quantum well wires.The correlation between confined and non-confined direction of the wire in the variational wave function is taken into account.The results show that the photoionization cross-sections are affected by the width of the wire and that their magnitudes are larger than those in infinite potential quantum well wires.In comparison with previous's results,the variational wave function improves the binding energy and decreases the value of photoionization cross-sections of the hydrogenic impurities,which makes the results more reasonable.展开更多
Based on the dielectric continuum model and Loudon's uniaxial crystal model,quasi-confined (QC) optical phonon modes and electron-QC phonon coupling functions in quasi-one-dimensional (QID) wurtzite quantum well ...Based on the dielectric continuum model and Loudon's uniaxial crystal model,quasi-confined (QC) optical phonon modes and electron-QC phonon coupling functions in quasi-one-dimensional (QID) wurtzite quantum well wires (QWWs) are deduced and analyzed. Numerical calculations on an AIN/GaN/AIN wurtzite QWW are performed. The results reveal that the dispersions of the QC modes are quite obvious only when the free wavenumber kz in the z-direction and the azimuthal quantum number m are small. The reduced behavior of the QC modes in wurtzite quantum systems is clearly observed. Through the discussion of the electron-QC mode coupling functions,it is found that the lower-frequency QC modes in the high-frequency region play a more important role in the electron-QC phonon interactions. Moreover,our computations also prove that kz and m have a similar influence on the electron-QC phonon coupling properties.展开更多
The behavior of a donor in the GaAs–GaAlAs quantum well wire represented by the Morse potential is examined within the framework of the effective-mass approximation. The donor binding energies are numerically calcula...The behavior of a donor in the GaAs–GaAlAs quantum well wire represented by the Morse potential is examined within the framework of the effective-mass approximation. The donor binding energies are numerically calculated for with and without the electric and magnetic fields in order to show their influence on the binding energies. Moreover, how the donor binding energies change for the constant potential parameters(De, re, and a) as well as with the different values of the electric and magnetic field strengths is determined. It is found that the donor binding energy is highly dependent on the external electric and magnetic fields as well as parameters of the Morse potential.展开更多
We study the electron states and the differential cross section for an electron Raman scattering process in a semi- conductor quantum well wire of cylindrical ring geometry. The electron Raman scattering developed her...We study the electron states and the differential cross section for an electron Raman scattering process in a semi- conductor quantum well wire of cylindrical ring geometry. The electron Raman scattering developed here can be used to provide direct information about the electron band structures of these confinement systems. We assume that the system grows in a GaAs/Al0.35Ga0.65As matrix. The system is modeled by considering T = 0 K and also a single parabolic con- duction band, which is split into a sub-band system due to the confinement. The emission spectra are discussed for different scattering configurations, and the selection rules for the processes are also studied. Singularities in the spectra are found and interpreted.展开更多
The cyclotron resonance of magnetopolaron in quantum well wires (QWWs) have been studied with the use of variational solutions to the effective mass equation. The results show that both the abso- lute value of the ele...The cyclotron resonance of magnetopolaron in quantum well wires (QWWs) have been studied with the use of variational solutions to the effective mass equation. The results show that both the abso- lute value of the electron-phonon interaction energy and the cyclotron resonance frequency de- crease with the increase of the sizes of QWWs, and also that the cyclotron resonance frequency in- creases with the external magnetic field.展开更多
We used the micro-Raman spectroscopy to investigate the V-grooved quantum well wires (QWWs), and first observed and assigned the Raman spectra of single QWW. They were the disorder induced modes at 223 and 243 cm-1, c...We used the micro-Raman spectroscopy to investigate the V-grooved quantum well wires (QWWs), and first observed and assigned the Raman spectra of single QWW. They were the disorder induced modes at 223 and 243 cm-1, confined LO mode of GaAs QWW at 267 cm-1, and higher order peaks of disorder induced modes at 488 and 707 cm-1.展开更多
The hole-hole interaction(Ehh) has been considered in a CdTe/Cd1-x Mnx Te Semimagnetic Quantum Well Wire(SQWW). The influence of the shape of the confining potential like square well and parabolic well type on the bin...The hole-hole interaction(Ehh) has been considered in a CdTe/Cd1-x Mnx Te Semimagnetic Quantum Well Wire(SQWW). The influence of the shape of the confining potential like square well and parabolic well type on the binding energy of an acceptor impurity with two holes and their Coulomb interaction between them has been studied for various impurity locations. Magnetic field has been used as a probe to understand the carrier-carrier correlation in such Quasi 1-Dimensional QWW since it alters the strength of the confining potential tremendously. In order to show the significance of the correlation between the two holes, the calculations have been done with and without including the correlation effect in the ground state wavefunction of the hyderogenic acceptor impurity and the results have been compared. The expectation value of the Hamiltonian, H, is minimized variationaly in the effective mass approximation through which(Ehh) has been obtained.展开更多
The motion of a bipolaron in the quantum well wire(QWW) has been investigated based on weakly or intermediately coupling with the surface optical phonon.This kind of system,in some sense,may represent the behaviour ...The motion of a bipolaron in the quantum well wire(QWW) has been investigated based on weakly or intermediately coupling with the surface optical phonon.This kind of system,in some sense,may represent the behaviour of bipolaron in high temperature ceramic superconductors.The Hamiltonian of the system is first transformed by double unitary transformation,so that some of the relevant quantities,such as the phonon induced potential energies V e so and U e so( z) ,can be calculated.The results of our calculation indicate that both of the phonon induced potential energies are strengthened as the radius ρ o of the QWW becomes thinner.However,this is valid merely for ρ o to be greater than a specific value that corresponds to the minimum of the energy.The total effective potential energy V eff ( z ) for the bipolaron in the QWW is also evaluated.The result of this wholy effective potential energy indicates that there is an equilibrium position for the two electrons which form the bipolaron.This position depends also on the radius of the QWW.The justification for our theoretical calculations awaits experimental results for future development in the low dimensional structure of superconductivity.展开更多
We present a theoretical investigation of the influence of photo-excitation and spin wave scattering on magnetization of the (Ga,Mn)As diluted magnetic semiconductor (DMS) quantum wires (QWRs) and quantum wells (QWs)....We present a theoretical investigation of the influence of photo-excitation and spin wave scattering on magnetization of the (Ga,Mn)As diluted magnetic semiconductor (DMS) quantum wires (QWRs) and quantum wells (QWs). Double time temperature dependent Green’s function formalism is used for the description of dispersion and spectral density of the systems. Our analysis indicates that spin wave scattering plays an influential role in magnetism of both systems while application of light is insignificant in quantum wells. In the absence of spin wave scattering and at sufficiently low temperatures, a result corresponding to the specific heat of dominating electronic contributions in metals is obtained in QWs. In QWRs, however, this magnetic property is found to vary with T1/2 and α2T1/2 so that light matter coupling has a leading effect on lower temperatures, where α is the light matter coupling factor and T is the temperature.展开更多
文摘The binding energy and the photon energy dependence of the photoionization cross-section are calculated for a hydrogenic impurity in GaAs/Ga 1-xAl xAs quantum well wires.The correlation between confined and non-confined direction of the wire in the variational wave function is taken into account.The results show that the photoionization cross-sections are affected by the width of the wire and that their magnitudes are larger than those in infinite potential quantum well wires.In comparison with previous's results,the variational wave function improves the binding energy and decreases the value of photoionization cross-sections of the hydrogenic impurities,which makes the results more reasonable.
文摘Based on the dielectric continuum model and Loudon's uniaxial crystal model,quasi-confined (QC) optical phonon modes and electron-QC phonon coupling functions in quasi-one-dimensional (QID) wurtzite quantum well wires (QWWs) are deduced and analyzed. Numerical calculations on an AIN/GaN/AIN wurtzite QWW are performed. The results reveal that the dispersions of the QC modes are quite obvious only when the free wavenumber kz in the z-direction and the azimuthal quantum number m are small. The reduced behavior of the QC modes in wurtzite quantum systems is clearly observed. Through the discussion of the electron-QC mode coupling functions,it is found that the lower-frequency QC modes in the high-frequency region play a more important role in the electron-QC phonon interactions. Moreover,our computations also prove that kz and m have a similar influence on the electron-QC phonon coupling properties.
基金supported by the Turkish Science Research Council(TBTAK)the Financial Supports from Akdeniz and Nigde Universities
文摘The behavior of a donor in the GaAs–GaAlAs quantum well wire represented by the Morse potential is examined within the framework of the effective-mass approximation. The donor binding energies are numerically calculated for with and without the electric and magnetic fields in order to show their influence on the binding energies. Moreover, how the donor binding energies change for the constant potential parameters(De, re, and a) as well as with the different values of the electric and magnetic field strengths is determined. It is found that the donor binding energy is highly dependent on the external electric and magnetic fields as well as parameters of the Morse potential.
文摘We study the electron states and the differential cross section for an electron Raman scattering process in a semi- conductor quantum well wire of cylindrical ring geometry. The electron Raman scattering developed here can be used to provide direct information about the electron band structures of these confinement systems. We assume that the system grows in a GaAs/Al0.35Ga0.65As matrix. The system is modeled by considering T = 0 K and also a single parabolic con- duction band, which is split into a sub-band system due to the confinement. The emission spectra are discussed for different scattering configurations, and the selection rules for the processes are also studied. Singularities in the spectra are found and interpreted.
文摘The cyclotron resonance of magnetopolaron in quantum well wires (QWWs) have been studied with the use of variational solutions to the effective mass equation. The results show that both the abso- lute value of the electron-phonon interaction energy and the cyclotron resonance frequency de- crease with the increase of the sizes of QWWs, and also that the cyclotron resonance frequency in- creases with the external magnetic field.
文摘We used the micro-Raman spectroscopy to investigate the V-grooved quantum well wires (QWWs), and first observed and assigned the Raman spectra of single QWW. They were the disorder induced modes at 223 and 243 cm-1, confined LO mode of GaAs QWW at 267 cm-1, and higher order peaks of disorder induced modes at 488 and 707 cm-1.
基金Supported by University Grants Commission,New Delhi,India under Major Research Project F.No.42-816/2013(SR)
文摘The hole-hole interaction(Ehh) has been considered in a CdTe/Cd1-x Mnx Te Semimagnetic Quantum Well Wire(SQWW). The influence of the shape of the confining potential like square well and parabolic well type on the binding energy of an acceptor impurity with two holes and their Coulomb interaction between them has been studied for various impurity locations. Magnetic field has been used as a probe to understand the carrier-carrier correlation in such Quasi 1-Dimensional QWW since it alters the strength of the confining potential tremendously. In order to show the significance of the correlation between the two holes, the calculations have been done with and without including the correlation effect in the ground state wavefunction of the hyderogenic acceptor impurity and the results have been compared. The expectation value of the Hamiltonian, H, is minimized variationaly in the effective mass approximation through which(Ehh) has been obtained.
文摘The motion of a bipolaron in the quantum well wire(QWW) has been investigated based on weakly or intermediately coupling with the surface optical phonon.This kind of system,in some sense,may represent the behaviour of bipolaron in high temperature ceramic superconductors.The Hamiltonian of the system is first transformed by double unitary transformation,so that some of the relevant quantities,such as the phonon induced potential energies V e so and U e so( z) ,can be calculated.The results of our calculation indicate that both of the phonon induced potential energies are strengthened as the radius ρ o of the QWW becomes thinner.However,this is valid merely for ρ o to be greater than a specific value that corresponds to the minimum of the energy.The total effective potential energy V eff ( z ) for the bipolaron in the QWW is also evaluated.The result of this wholy effective potential energy indicates that there is an equilibrium position for the two electrons which form the bipolaron.This position depends also on the radius of the QWW.The justification for our theoretical calculations awaits experimental results for future development in the low dimensional structure of superconductivity.
文摘We present a theoretical investigation of the influence of photo-excitation and spin wave scattering on magnetization of the (Ga,Mn)As diluted magnetic semiconductor (DMS) quantum wires (QWRs) and quantum wells (QWs). Double time temperature dependent Green’s function formalism is used for the description of dispersion and spectral density of the systems. Our analysis indicates that spin wave scattering plays an influential role in magnetism of both systems while application of light is insignificant in quantum wells. In the absence of spin wave scattering and at sufficiently low temperatures, a result corresponding to the specific heat of dominating electronic contributions in metals is obtained in QWs. In QWRs, however, this magnetic property is found to vary with T1/2 and α2T1/2 so that light matter coupling has a leading effect on lower temperatures, where α is the light matter coupling factor and T is the temperature.