In this paper, the orange peel defect in the surface range of the st14 steel sheet has been investigated using the electron backscattered diffraction (EBSD) technique. It has been found that the orange peel defect in ...In this paper, the orange peel defect in the surface range of the st14 steel sheet has been investigated using the electron backscattered diffraction (EBSD) technique. It has been found that the orange peel defect in the st14 steel sheet was resulted from the local coarse grains which were produced during hot-rolling due to the critical deformation in dual-phase zone. During deep drawing, the coarse grains with {100}<001> microtexture can slip on the {112}<111> slip system to form bulging and yields orange peel defects, while the coarse grains with {112}<110> orientation do not form the defect as the Schmid factor of {112}<111> slip system in it equals zero.展开更多
The formation cause of orange peel of aluminum-alloy automotive sheet after tensile deformation was analysed by using X-ray diffraction and electron back-scattered diffraction(EBSD).The test results showed that format...The formation cause of orange peel of aluminum-alloy automotive sheet after tensile deformation was analysed by using X-ray diffraction and electron back-scattered diffraction(EBSD).The test results showed that formation cause of surface orange peel after tensile deformation related to product texture and nonuniform deformation during the tensile process.The grain size has significant effect on deformation uniform and texture formation.Coarse grains were easy to produce nonuniform deformation and texture,which would produce surface orange peel after tensile deformation.展开更多
We studied the microstructure evolution of Mg-4Y-3Nd-2Sm-0.5Zr alloy by quasi-in-situ electron backscatter diffraction(EBSD)along with several strains under compression tests,which provided direct evidence for the inf...We studied the microstructure evolution of Mg-4Y-3Nd-2Sm-0.5Zr alloy by quasi-in-situ electron backscatter diffraction(EBSD)along with several strains under compression tests,which provided direct evidence for the influence of different twin-twin geometric structure on the twinning behavior.The results showed that the mechanical properties of the alloy were higher than traditional magnesium alloys(the maximum compressive strength reaches 402.5 MPa)due to the strengthening effect of Sm and Nd elements addition on solution strengthening,precipitation strengthening,and grain refinement.Combined with the quasi-in-situ EBSD technique,two different twin-twin geometric structures,‘parallel structure’and‘cross structure’,were observed directly in the alloy.In the later stage of deformation,for‘parallel structure’,residual stress and a large number of dislocations mainly existed in the twin boundary and tip position.For the‘cross structure’,there was a lot of dislocation density in the interior of twins after fusion.The twin growth rate of‘parallel structure’was much faster than that of‘cross structure’because the stress of twins was mainly concentrated on the tip of twin.When the movement for the tip of twin was blocked,the growth rate of twin would be obviously decreased.Moreover,the‘cross structure’was easy to produce closed space.Due to the constraints of surrounding twins,the confined space was easy to stress concentration,thus inhibiting the growth of twins.At the same time,the‘cross structure’of twins needed a more external force to continue to deform,which also served as a strengthening structure.展开更多
Grain boundaries play a significant role in the deformation of polycrystals.Their response to deformation is however not completely understood,particularly with respect to how they accommodate lattice rotation of adjo...Grain boundaries play a significant role in the deformation of polycrystals.Their response to deformation is however not completely understood,particularly with respect to how they accommodate lattice rotation of adjoining crystallites by changing their structure and geometry.The current study thus investigates the deformation behaviour of Mg bicrystals with 90°<1120>symmetric tilt boundary strained in plane-strain compression up to different final strains.Due to the initial soft orientation of the two crystals,activation of basal slip in each crystal gave rise to lattice rotation around the transverse direction towards the compression direction of the channel-die.Hundreds of single EBSD maps with a small step size were obtained from the GB region and stitched together to produce large panoramic maps of a macroscopic scale.Although very time-consuming,this technique has proven useful in clarifying the origin of the non-uniform deformation zones in the vicinity of the grain boundary and explains the mechanisms,by which the grain boundary was able to cope with the imposed strain before fracture.Interestingly,several variants of extension twins were observed as an additional deformation mechanism despite having negative Schmid factors.Systematic investigation of their resulting combined shear components with respect to the sample coordinate system revealed an alignment along the longitudinal direction of the channel-die,therefore justifying their nucleation.展开更多
基金This work was supported by the National Natural Science Foundation of China under grant No.50171040.
文摘In this paper, the orange peel defect in the surface range of the st14 steel sheet has been investigated using the electron backscattered diffraction (EBSD) technique. It has been found that the orange peel defect in the st14 steel sheet was resulted from the local coarse grains which were produced during hot-rolling due to the critical deformation in dual-phase zone. During deep drawing, the coarse grains with {100}<001> microtexture can slip on the {112}<111> slip system to form bulging and yields orange peel defects, while the coarse grains with {112}<110> orientation do not form the defect as the Schmid factor of {112}<111> slip system in it equals zero.
文摘The formation cause of orange peel of aluminum-alloy automotive sheet after tensile deformation was analysed by using X-ray diffraction and electron back-scattered diffraction(EBSD).The test results showed that formation cause of surface orange peel after tensile deformation related to product texture and nonuniform deformation during the tensile process.The grain size has significant effect on deformation uniform and texture formation.Coarse grains were easy to produce nonuniform deformation and texture,which would produce surface orange peel after tensile deformation.
基金supported by the National Natural Sci-ence Foundation of China(Grant no.51571084)financial support from the China Scholarship Council(Grant No.201908410208).
文摘We studied the microstructure evolution of Mg-4Y-3Nd-2Sm-0.5Zr alloy by quasi-in-situ electron backscatter diffraction(EBSD)along with several strains under compression tests,which provided direct evidence for the influence of different twin-twin geometric structure on the twinning behavior.The results showed that the mechanical properties of the alloy were higher than traditional magnesium alloys(the maximum compressive strength reaches 402.5 MPa)due to the strengthening effect of Sm and Nd elements addition on solution strengthening,precipitation strengthening,and grain refinement.Combined with the quasi-in-situ EBSD technique,two different twin-twin geometric structures,‘parallel structure’and‘cross structure’,were observed directly in the alloy.In the later stage of deformation,for‘parallel structure’,residual stress and a large number of dislocations mainly existed in the twin boundary and tip position.For the‘cross structure’,there was a lot of dislocation density in the interior of twins after fusion.The twin growth rate of‘parallel structure’was much faster than that of‘cross structure’because the stress of twins was mainly concentrated on the tip of twin.When the movement for the tip of twin was blocked,the growth rate of twin would be obviously decreased.Moreover,the‘cross structure’was easy to produce closed space.Due to the constraints of surrounding twins,the confined space was easy to stress concentration,thus inhibiting the growth of twins.At the same time,the‘cross structure’of twins needed a more external force to continue to deform,which also served as a strengthening structure.
基金The authors express their gratitude to the Deutsche Forschungsgemeinschaft(DFG)for financial support(MO 848/18-2)。
文摘Grain boundaries play a significant role in the deformation of polycrystals.Their response to deformation is however not completely understood,particularly with respect to how they accommodate lattice rotation of adjoining crystallites by changing their structure and geometry.The current study thus investigates the deformation behaviour of Mg bicrystals with 90°<1120>symmetric tilt boundary strained in plane-strain compression up to different final strains.Due to the initial soft orientation of the two crystals,activation of basal slip in each crystal gave rise to lattice rotation around the transverse direction towards the compression direction of the channel-die.Hundreds of single EBSD maps with a small step size were obtained from the GB region and stitched together to produce large panoramic maps of a macroscopic scale.Although very time-consuming,this technique has proven useful in clarifying the origin of the non-uniform deformation zones in the vicinity of the grain boundary and explains the mechanisms,by which the grain boundary was able to cope with the imposed strain before fracture.Interestingly,several variants of extension twins were observed as an additional deformation mechanism despite having negative Schmid factors.Systematic investigation of their resulting combined shear components with respect to the sample coordinate system revealed an alignment along the longitudinal direction of the channel-die,therefore justifying their nucleation.