期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Application of Exergy for Research on Increasing the Usefulness of Solar Radiation by Dispersing It into Monochromatic Beams
1
作者 Ryszard Petela 《Energy and Power Engineering》 CAS 2023年第1期73-103,共31页
Energy determines the ability of matter to work. However, in the given environment, the real usefulness to perform work is determined by exergy. This study covers not only solar, but also any monochromatic thermal rad... Energy determines the ability of matter to work. However, in the given environment, the real usefulness to perform work is determined by exergy. This study covers not only solar, but also any monochromatic thermal radiation. The value of such radiation was determined by its exergy and the ratio of its exergy-to-energy. A novelty in this work is to demonstrate by means of exergy that the usefulness of thermal polychromatic radiation can be increased by its dispersion to monochromatic radiation. This effect is the greater, the lower the temperature of the radiation. Analogies of this effect to the exergetic effect of gas separation have been indicated. The effect of the increase in exergy in the process of radiation dispersion was interpreted by means of a cylinder-piston system that explains this effect with the influence of environmental radiation. The concept of quasi-monochromatic and cumulated radiation was introduced into dispersion considerations and the change in the energetic, entropic and environmental components of the exergy of radiation beams was analyzed. Considerations were illustrated with appropriate examples of calculations considering dispersion of high-temperature radiation, such as extraterrestrial solar radiation and dispersion of low-temperature radiation from water vapor. 展开更多
关键词 radiation exergy Monochromatic radiation Solar radiation Water Vapor radiation Light Dispersion exergy-Energy Ratio
下载PDF
New Insight to the Surface Temperature of the Sun
2
作者 Ryszard Petela 《Energy and Power Engineering》 2024年第8期285-292,共8页
Information is given on thermal radiation from the Sun, considered in practical engineering calculations of heat exchange. It was found that although the surface temperature of the Sun is assumed to be about 5800 K, t... Information is given on thermal radiation from the Sun, considered in practical engineering calculations of heat exchange. It was found that although the surface temperature of the Sun is assumed to be about 5800 K, the solar spectrum data measured by Kondratyev lead to a value of at least 7134 K. Such a higher value can be obtained by interpreting the Planck formula for the black radiation spectrum for the Kondratyev data. In addition, using the Stefan-Boltzmann law, the energetic emissivity of the Sun’s surface was determined to be 0.431. Furthermore, based on Petela’s formulae for exergy of thermal radiation, the exergetic emissivity of the Sun’s surface was also calculated at the level of 0.426. 展开更多
关键词 Thermal radiation radiation Temperature Surface Temperature Surface Emissivity Sun radiation Spectrum Plank Law exergy of radiation Photosphere
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部