The safety of rail is very important for the development of high speed railway, and it is necessary to investigate the features of inner cracks in rail. In order to obtain the features of Acoustic Emission (AE) sour...The safety of rail is very important for the development of high speed railway, and it is necessary to investigate the features of inner cracks in rail. In order to obtain the features of Acoustic Emission (AE) sources of inner cracks in rail, AE sources with different types, depths and propagation distances are examined for crack in rail. The finite element method is utilized to model the rail with cracks and the results of experiment demonstrate the effectiveness of this model. Wavelet transform and Rayleigh-Lamb equations are utilized to extract the features of crack AE sources. The results illustrate that the intensity ratio among AE modes can identify the AE source types and the AE sources with different frequencies in rail. There are uniform AE mode features existing in the AE signals from AE sources in rail web, however AE signals from AE sources in rail head and rail base have the complex and unstable AE modes. Different AE source types have the different propagation features in rail. It is helpful to understand the rail cracks and detect the rail cracks based on the AE technique.展开更多
We do theoretical research on using high-speed rail(HSR)as an active source to perform reverse time migration(RTM)and analyze the influence of the interferometric field on the seismic imaging results.When a train runs...We do theoretical research on using high-speed rail(HSR)as an active source to perform reverse time migration(RTM)and analyze the influence of the interferometric field on the seismic imaging results.When a train runs on a rail viaduct,the evenly spaced piers of the viaduct generate a nearly spherical interferometric wavefield with radically travelling waves in frequency-determined directions.We find that the directions span stationary areas of the interference phases,of which cross-talks deteriorating HSR seismic imaging can be well suppressed by stacking.Accordingly,we propose a method for performing RTM by employing HSR data.Numerical tests primarily verify the proposed method by use of 2 D and 3 D acoustic wave equations.Subsequently,we execute least square RTM to suppress crosstalk artifacts,further improving the imaging quality.At last,we stack images derived from trains with different velocities,which extends the frequency band,effectively overcoming the limit from the discrete spectrum of the source wavelet.展开更多
基金supported by the China Scholarship Council,the National Natural Science Foundation of China(61171197,61201307,61371045)the Innovation Funds of Harbin Institute of Technology(Grant IDGA18102011)the Promotive Research Fund for Excellent Young and Middle-Aged Scientisits of Shandong Province(BS2010DX001)
文摘The safety of rail is very important for the development of high speed railway, and it is necessary to investigate the features of inner cracks in rail. In order to obtain the features of Acoustic Emission (AE) sources of inner cracks in rail, AE sources with different types, depths and propagation distances are examined for crack in rail. The finite element method is utilized to model the rail with cracks and the results of experiment demonstrate the effectiveness of this model. Wavelet transform and Rayleigh-Lamb equations are utilized to extract the features of crack AE sources. The results illustrate that the intensity ratio among AE modes can identify the AE source types and the AE sources with different frequencies in rail. There are uniform AE mode features existing in the AE signals from AE sources in rail web, however AE signals from AE sources in rail head and rail base have the complex and unstable AE modes. Different AE source types have the different propagation features in rail. It is helpful to understand the rail cracks and detect the rail cracks based on the AE technique.
基金supported by the public High Preference Computer of Peking Universitysupported by the Program of Hebei Earthquake Science and Technology Spark Plan (Grant No. DZ20200827054)
文摘We do theoretical research on using high-speed rail(HSR)as an active source to perform reverse time migration(RTM)and analyze the influence of the interferometric field on the seismic imaging results.When a train runs on a rail viaduct,the evenly spaced piers of the viaduct generate a nearly spherical interferometric wavefield with radically travelling waves in frequency-determined directions.We find that the directions span stationary areas of the interference phases,of which cross-talks deteriorating HSR seismic imaging can be well suppressed by stacking.Accordingly,we propose a method for performing RTM by employing HSR data.Numerical tests primarily verify the proposed method by use of 2 D and 3 D acoustic wave equations.Subsequently,we execute least square RTM to suppress crosstalk artifacts,further improving the imaging quality.At last,we stack images derived from trains with different velocities,which extends the frequency band,effectively overcoming the limit from the discrete spectrum of the source wavelet.