This paper investigates the low earth orbit(LEO)satellite-enabled coded compressed sensing(CCS)unsourced random access(URA)in orthogonal frequency division multiple access(OFDMA)framework,where a massive uniform plana...This paper investigates the low earth orbit(LEO)satellite-enabled coded compressed sensing(CCS)unsourced random access(URA)in orthogonal frequency division multiple access(OFDMA)framework,where a massive uniform planar array(UPA)is equipped on the satellite.In LEO satellite communications,unavoidable timing and frequency offsets cause phase shifts in the transmitted signals,substantially diminishing the decoding performance of current terrestrial CCS URA receiver.To cope with this issue,we expand the inner codebook with predefined timing and frequency offsets and formulate the inner decoding as a tractable compressed sensing(CS)problem.Additionally,we leverage the inherent sparsity of the UPA-equipped LEO satellite angular domain channels,thereby enabling the outer decoder to support more active devices.Furthermore,the outputs of the outer decoder are used to reduce the search space of the inner decoder,which cuts down the computational complexity and accelerates the convergence of the inner decoding.Simulation results verify the effectiveness of the proposed scheme.展开更多
There are numerous terminals in the satellite Internet of Things(IoT).To save cost and reduce power consumption,the system needs terminals to catch the characteristics of low power consumption and light control.The re...There are numerous terminals in the satellite Internet of Things(IoT).To save cost and reduce power consumption,the system needs terminals to catch the characteristics of low power consumption and light control.The regular random access(RA)protocols may generate large amounts of collisions,which degrade the system throughout severally.The near-far effect and power control technologies are not applicable in capture effect to obtain power difference,resulting in the collisions that cannot be separated.In fact,the optimal design at the receiving end can also realize the condition of packet power domain separation,but there are few relevant researches.In this paper,an auxiliary beamforming scheme is proposed for power domain signal separation.It adds an auxiliary reception beam based on the conventional beam,utilizing the correlation of packets in time-frequency domain between the main and auxiliary beam to complete signal separation.The roll-off belt of auxiliary beam is used to create the carrier-to-noise ratio(CNR)difference.This paper uses the genetic algorithm to optimize the auxiliary beam direction.Simulation results show that the proposed scheme outperforms slotted ALOHA(SA)in terms of system throughput per-formance and without bringing terminals additional control burden.展开更多
Reducing the process variation is a significant concern for resistive random access memory(RRAM).Due to its ultrahigh integration density,RRAM arrays are prone to lithographic variation during the lithography process,...Reducing the process variation is a significant concern for resistive random access memory(RRAM).Due to its ultrahigh integration density,RRAM arrays are prone to lithographic variation during the lithography process,introducing electrical variation among different RRAM devices.In this work,an optical physical verification methodology for the RRAM array is developed,and the effects of different layout parameters on important electrical characteristics are systematically investigated.The results indicate that the RRAM devices can be categorized into three clusters according to their locations and lithography environments.The read resistance is more sensitive to the locations in the array(~30%)than SET/RESET voltage(<10%).The increase in the RRAM device length and the application of the optical proximity correction technique can help to reduce the variation to less than 10%,whereas it reduces RRAM read resistance by 4×,resulting in a higher power and area consumption.As such,we provide design guidelines to minimize the electrical variation of RRAM arrays due to the lithography process.展开更多
Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to en...Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to enhance performance.Among them,resistive random access memory(RRAM)has gained significant attention due to its numerousadvantages over traditional memory devices,including high speed(<1 ns),high density(4 F^(2)·n^(-1)),high scalability(~nm),and low power consumption(~pJ).This review focuses on the recent progress of embedded RRAM in industrial manufacturing and its potentialapplications.It provides a brief introduction to the concepts and advantages of RRAM,discusses the key factors that impact its industrial manufacturing,and presents the commercial progress driven by cutting-edge nanotechnology,which has been pursued by manysemiconductor giants.Additionally,it highlights the adoption of embedded RRAM in emerging applications within the realm of the Internet of Things and future intelligent computing,with a particular emphasis on its role in neuromorphic computing.Finally,the review discusses thecurrent challenges and provides insights into the prospects of embedded RRAM in the era of big data and artificial intelligence.展开更多
Due to the limited uplink capability in heterogeneousnetworks (HetNets), the decoupled uplinkand downlink access (DUDA) mode has recently beenproposed to improve the uplink performance. In thispaper, the random discon...Due to the limited uplink capability in heterogeneousnetworks (HetNets), the decoupled uplinkand downlink access (DUDA) mode has recently beenproposed to improve the uplink performance. In thispaper, the random discontinuous transmission (DTX)at user equipment (UE) is adopted to reduce the interferencecorrelation across different time slots. By utilizingstochastic geometry, we analytically derive themean local delay and energy efficiency (EE) of an uplinkHetNet with UE random DTX scheme under theDUDA mode. These expressions are further approximatedas closed forms under reasonable assumptions.Our results reveal that under the DUDA mode, there isan optimal EE with respect to mute probability underthe finite local delay constraint. In addition, with thesame finite mean local delay as under the coupled uplinkand downlink access (CUDA) mode, the HetNetsunder the DUDA mode can achieve a higher EE witha lower mute probability.展开更多
Massive machine type communication aims to support the connection of massive devices,which is still an important scenario in 6G.In this paper,a novel cluster-based massive access method is proposed for massive multipl...Massive machine type communication aims to support the connection of massive devices,which is still an important scenario in 6G.In this paper,a novel cluster-based massive access method is proposed for massive multiple input multiple output systems.By exploiting the angular domain characteristics,devices are separated into multiple clusters with a learned cluster-specific dictionary,which enhances the identification of active devices.For detected active devices whose data recovery fails,power domain nonorthogonal multiple access with successive interference cancellation is employed to recover their data via re-transmission.Simulation results show that the proposed scheme and algorithm achieve improved performance on active user detection and data recovery.展开更多
Pattem imprinting in deep sub-micron static random access memories (SRAMs) during total dose irradiation is inves- tigated in detail. As the dose accumulates, the data pattern of memory cells loading during irradiat...Pattem imprinting in deep sub-micron static random access memories (SRAMs) during total dose irradiation is inves- tigated in detail. As the dose accumulates, the data pattern of memory cells loading during irradiation is gradually imprinted on their background data pattern. We build a relationship between the memory cell's static noise margin (SNM) and the background data, and study the influence of irradiation on the probability density function of ASNM, which is the difference between two data sides' SNMs, to discuss the reason for pattern imprinting. Finally, we demonstrate that, for micron and deep sub-micron devices, the mechanism of pattern imprinting is the bias-dependent threshold shift of the transistor, but for a deep sub-micron device the shift results from charge trapping in the shallow trench isolation (STI) oxide rather than from the gate oxide of the micron-device.展开更多
为解决海量机器类通信(mMTC,massive machine type communications)场景下,机器类通信设备(MTCD,machine type communication device)采用传统随机接入方案时,往往出现网络严重拥塞,导致大量MTCD无法成功接入网络问题,提出了一种基于前...为解决海量机器类通信(mMTC,massive machine type communications)场景下,机器类通信设备(MTCD,machine type communication device)采用传统随机接入方案时,往往出现网络严重拥塞,导致大量MTCD无法成功接入网络问题,提出了一种基于前导码重传辅助的动态接入类别限制(PRT-ACB,preamble retransmission access class barring)方案。利用MTCD的前导码重传次数,将每个随机接入机会(RAO,random access opportunity)中尝试发起接入的MTCD划分为高、低优先级,结合每个RAO中负载数估计模型,分别为其设定随每个RAO中的接入负载动态变化的高、低优先级限制因子和可用前导码池,使更多MTCD能在未达到最大前导码传输次数前成功接入网络。仿真结果表明,所提方案能有效提升MTCD的接入成功概率,降低MTCD接入网络所需时延。所提方案可以作为缓解海量通信设备同时接入网络造成拥塞的一种解决方案。展开更多
Using computer-aided design three-dimensional (3D) simulation technology, the recovery mechanism of single event upset and the effects of spacing and hit angle on the recovery are studied. It is found that the multi...Using computer-aided design three-dimensional (3D) simulation technology, the recovery mechanism of single event upset and the effects of spacing and hit angle on the recovery are studied. It is found that the multi-node charge collection plays a key role in recovery and shielding the charge sharing by adding guard rings. It cannot exhibit the recovery effect. It is also indicated that the upset linear energy transfer (LET) threshold is kept constant while the recovery LET threshold increases as the spacing increases. Additionally, the effect of incident angle on recovery is analysed and it is shown that a larger angle can bring about a stronger charge sharing effect, thus strengthening the recovery ability.展开更多
We propose a pilot domain non-orthogonal multiple access(NOMA)for uplink massive devices grant-free random access scenarios in massive multiple-input multiple-output(MIMO)maritime communication systems.These scenarios...We propose a pilot domain non-orthogonal multiple access(NOMA)for uplink massive devices grant-free random access scenarios in massive multiple-input multiple-output(MIMO)maritime communication systems.These scenarios are characterized by numerous devices with sporadic access behavior,and therefore only a subset of them are active.Due to massive potential devices in the network,it is infeasible to assign a unique orthogonal pilot to each device in advance.In such scenarios,pilot decontamination is a crucial problem.In this paper,the devices are randomly assigned non-orthogonal pilots which are constructed by a linear combination of some orthogonal pilots.We show that a bipartite graph can conveniently describe the interference cancellation(IC)processes of pilot decontamination.High spectrum efficiency(SE)and low outage probability can be obtained by selecting the numbers of orthogonal pilots according to the given probability distribution.Numerical evaluatioDs show that the proposed pilot domain NOMA decreases the outage probability from 20%to 2 e-12 at the SE of 4 bits/s/Hz for a single device,compared to the conventional method of slotted ALOHA with 1024 antennas at the BS,or increases the spectrum efficiency from 1.2 bits/s/Hz to 4 bit/s/Hz at the outage probability of2 e-12 in contrast with the Welch bound equality(WBE)non-orthogonal pilots.展开更多
In this study, an improved random access(RA) scheme for Machine-to-Machine(M2M) communications is proposed. The improved RA scheme is realized by two steps. First, the improved RA scheme achieves a reasonable resource...In this study, an improved random access(RA) scheme for Machine-to-Machine(M2M) communications is proposed. The improved RA scheme is realized by two steps. First, the improved RA scheme achieves a reasonable resource tradeoff between physical random access channel(PRACH) and physical uplink shared channel(PUSCH). To realize a low-complexity resource allocation between PRACH and PUSCH, a boundary of traffic load is derived to divide the number of active M2 M users(UEs) into multiple intervals. The corresponding resource allocation for these intervals is determined by e NB. Then the resource allocation for other number of UEs can be obtained from the allocation of these intervals with less computation. Second, the access barring on arrival rate of new UEs is introduced in the improved RA scheme to reduce the expected delay. Numerical results show that the proposed improved RA scheme can realize a low-complexity resource allocation between PRACH and PUSCH. Meanwhile, the expected delay can be effectively reduced by access barring on arriving rate of new M2 M UEs.展开更多
Random access is a well-known multiple access method for uncoordinated communication nodes.Existing work mainly focuses on optimizing iterative access protocols,assuming that packets are corrupted once they are collid...Random access is a well-known multiple access method for uncoordinated communication nodes.Existing work mainly focuses on optimizing iterative access protocols,assuming that packets are corrupted once they are collided,or that feedback is available and can be exploited.In practice,a packet may still be able to be recovered successfully even when collided with other packets.System design and performance analysis under such a situation,particularly when the details of collision are taken into consideration,are less known.In this paper,we provide a framework for analytically evaluating the actual detection performance in a random temporal multiple access system where nodes can only transmit.Explicit expressions are provided for collision probability and signal to interference and noise ratio(SINR)when different numbers of packets are collided.We then discuss and compare two receiver options for the AP,and provide detailed receiver design for the premium one.In particular,we propose a synchronization scheme which can largely reduce the preamble length.We also demonstrate that system performance could be a convex function of preamble length both analytically and via simulation,as well as the forward error correction(FEC)coding rate.展开更多
In this paper, a random access inter-satellite ranging(RAISR) system is designed. The ranging accuracy is optimized by an algorithm to greatly improve the ranging accuracy. This paper verifies the feasibility of the R...In this paper, a random access inter-satellite ranging(RAISR) system is designed. The ranging accuracy is optimized by an algorithm to greatly improve the ranging accuracy. This paper verifies the feasibility of the RAISR system through a series of theoretical analysis, numerical simulation, hardware system design and testing. The research work brings the solution to the design and accuracy optimization problem of the RAISR system,which eliminates the main error caused by the satellite dynamic characteristics and frequency source drift of the RAISR system.The accuracy of the measurement system has been significantly improved.展开更多
In the future fifth generation(5G) systems,non-orthogonal multiple access(NOMA) is a promising technology that can greatly enhance the network capacity compared to orthogonal multiple access(OMA) .In this paper,we pro...In the future fifth generation(5G) systems,non-orthogonal multiple access(NOMA) is a promising technology that can greatly enhance the network capacity compared to orthogonal multiple access(OMA) .In this paper,we propose a novel random access(RA) and resource allocation scheme for the coexistence of NOMA-based and OMAbased machine-to-machine(M2M) communications,which aims at improving the number of successful data packet transmissions and guaranteeing the quality of service(Qo S) (e.g.,the minimum data rate requirement) for M2 M communications.The algorithm of joint user equipment(UE) paring and power allocation is proposed for the coexisting RA(i.e.,the coexistence of NOMA-based RA and OMA-based RA) .The resource allocation for the coexisting RA is investigated,thus improving the number of successful data packet transmissions by more efficiently using the radio resources.Simulation results demonstrate that the proposed RA and resource allocation scheme outperforms the conventional RA in terms of the number of successful data packet transmissions,thus is a promising technology in future M2 M communications.展开更多
This paper investigated phase change Si1Sb2Te3 material for application of chalcogenide random access memory. Current-voltage performance was conducted to determine threshold current of phase change from amorphous pha...This paper investigated phase change Si1Sb2Te3 material for application of chalcogenide random access memory. Current-voltage performance was conducted to determine threshold current of phase change from amorphous phase to polycrystalline phase. The film holds a threshold current about 0.155 mA, which is smaller than the value 0.31 mA of Ge2Sb2Te5 film. Amorphous Si1Sb2Te3 changes to face-centred-cubic structure at ~ 180℃ and changes to hexagonal structure at ~ 270℃. Annealing temperature dependent electric resistivity of Si1Sb2Te3 film was studied by four-point probe method. Data retention of the films was characterized as well.展开更多
The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,...The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,computing devices use the von Neumann architecture with separate computing and memory units,which exposes the shortcomings of“memory bottleneck”.Nonvolatile memristor can realize data storage and in-memory computing at the same time and promises to overcome this bottleneck.Phase-change random access memory(PCRAM)is called one of the best solutions for next generation non-volatile memory.Due to its high speed,good data retention,high density,low power consumption,PCRAM has the broad commercial prospects in the in-memory computing application.In this review,the research progress of phase-change materials and device structures for PCRAM,as well as the most critical performances for a universal memory,such as speed,capacity,and power consumption,are reviewed.By comparing the advantages and disadvantages of phase-change optical disk and PCRAM,a new concept of optoelectronic hybrid storage based on phase-change material is proposed.Furthermore,its feasibility to replace existing memory technologies as a universal memory is also discussed as well.展开更多
A magnetoresistive random-access memory(MRAM) device was irradiated by ^(60) Co c-rays and an electron beam.The synergistic effect of this on the MRAM was tested with an additional magnetic field during irradiation,fr...A magnetoresistive random-access memory(MRAM) device was irradiated by ^(60) Co c-rays and an electron beam.The synergistic effect of this on the MRAM was tested with an additional magnetic field during irradiation,from which the total ionizing dose(TID) and the synergistic damage mechanism of MRAM were analyzed.In addition,DC,AC,and functional parameters of the memory were tested under irradiation and annealing via a very large-scale integrated circuit test system.The radiation-sensitive parameters were obtained through analyzing the data.Because of the magnetic field applied on the MRAM while testing the synergistic effects,shallow trench isolation leakage and Frenkel–Poole emission due to synergistic effects were smaller than that of TID,and hence radiation damage of the synergistic effects was also lower.展开更多
Recent progresses in magnetic tunnel junctions with perpendicular magnetic anisotropy (PMA) are reviewed and summarized. At first, the concept and source of perpendicular magnetic anisotropy (PMA) are introduced. ...Recent progresses in magnetic tunnel junctions with perpendicular magnetic anisotropy (PMA) are reviewed and summarized. At first, the concept and source of perpendicular magnetic anisotropy (PMA) are introduced. Next, a historical overview of PMA materials as magnetic electrodes, such as the RE-TM alloys TbFeCo and GdFeCo, novel tetragonal manganese alloys Mn-Ga, L10-ordered (Co, Fe)/Pt alloy, multilayer film [Co, Fe, CoFe/Pt, Pd, Ni, AU]N, and ultra-thin magnetic metal/oxidized barrier is offered. The other part of the article focuses on the optimization and fabrication of CoFeB/MgO/CoFeB p-MTJs, which is thought to have high potential to meet the main demands for non-volatile magnetic random access memory.展开更多
With energy harvesting capability, the Internet of things(IoT) devices transmit data depending on their available energy, which leads to a more complicated coupling and brings new technical challenges to delay optimiz...With energy harvesting capability, the Internet of things(IoT) devices transmit data depending on their available energy, which leads to a more complicated coupling and brings new technical challenges to delay optimization. In this paper,we study the delay-optimal random access(RA) in large-scale energy harvesting IoT networks. We model a two-dimensional Markov decision process(MDP)to address the coupling between the data and energy queues, and adopt the mean field game(MFG) theory to reveal the coupling among the devices by utilizing the large-scale property. Specifically, to obtain the optimal access strategy for each device, we derive the Hamilton-Jacobi-Bellman(HJB) equation which requires the statistical information of other devices.Moreover, to model the evolution of the states distribution in the system, we derive the Fokker-PlanckKolmogorov(FPK) equation based on the access strategy of devices. By solving the two coupled equations,we obtain the delay-optimal random access solution in an iterative manner with Lax-Friedrichs method. Finally, the simulation results show that the proposed scheme achieves significant performance gain compared with the conventional schemes.展开更多
An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell ...An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current.展开更多
基金supported by the National Key R&D Program of China under Grant 2023YFB2904703the National Natural Science Foundation of China under Grant 62341110,62371122 and 62322104+1 种基金the Jiangsu Province Basic Research Project under Grant BK20192002the Fundamental Research Funds for the Central Universities under Grant 2242022k30005 and 2242023K5003。
文摘This paper investigates the low earth orbit(LEO)satellite-enabled coded compressed sensing(CCS)unsourced random access(URA)in orthogonal frequency division multiple access(OFDMA)framework,where a massive uniform planar array(UPA)is equipped on the satellite.In LEO satellite communications,unavoidable timing and frequency offsets cause phase shifts in the transmitted signals,substantially diminishing the decoding performance of current terrestrial CCS URA receiver.To cope with this issue,we expand the inner codebook with predefined timing and frequency offsets and formulate the inner decoding as a tractable compressed sensing(CS)problem.Additionally,we leverage the inherent sparsity of the UPA-equipped LEO satellite angular domain channels,thereby enabling the outer decoder to support more active devices.Furthermore,the outputs of the outer decoder are used to reduce the search space of the inner decoder,which cuts down the computational complexity and accelerates the convergence of the inner decoding.Simulation results verify the effectiveness of the proposed scheme.
基金supported by the National Science Foundation of China(No.U21A20450)Natural Science Foundation of Jiangsu Province Major Project(No.BK20192002)+1 种基金National Natural Science Foundation of China(No.61971440)National Natural Science Foundation of China(No.62271266).
文摘There are numerous terminals in the satellite Internet of Things(IoT).To save cost and reduce power consumption,the system needs terminals to catch the characteristics of low power consumption and light control.The regular random access(RA)protocols may generate large amounts of collisions,which degrade the system throughout severally.The near-far effect and power control technologies are not applicable in capture effect to obtain power difference,resulting in the collisions that cannot be separated.In fact,the optimal design at the receiving end can also realize the condition of packet power domain separation,but there are few relevant researches.In this paper,an auxiliary beamforming scheme is proposed for power domain signal separation.It adds an auxiliary reception beam based on the conventional beam,utilizing the correlation of packets in time-frequency domain between the main and auxiliary beam to complete signal separation.The roll-off belt of auxiliary beam is used to create the carrier-to-noise ratio(CNR)difference.This paper uses the genetic algorithm to optimize the auxiliary beam direction.Simulation results show that the proposed scheme outperforms slotted ALOHA(SA)in terms of system throughput per-formance and without bringing terminals additional control burden.
基金supported in part by the Open Fund of State Key Laboratory of Integrated Chips and Systems,Fudan Universityin part by the National Science Foundation of China under Grant No.62304133 and No.62350610271.
文摘Reducing the process variation is a significant concern for resistive random access memory(RRAM).Due to its ultrahigh integration density,RRAM arrays are prone to lithographic variation during the lithography process,introducing electrical variation among different RRAM devices.In this work,an optical physical verification methodology for the RRAM array is developed,and the effects of different layout parameters on important electrical characteristics are systematically investigated.The results indicate that the RRAM devices can be categorized into three clusters according to their locations and lithography environments.The read resistance is more sensitive to the locations in the array(~30%)than SET/RESET voltage(<10%).The increase in the RRAM device length and the application of the optical proximity correction technique can help to reduce the variation to less than 10%,whereas it reduces RRAM read resistance by 4×,resulting in a higher power and area consumption.As such,we provide design guidelines to minimize the electrical variation of RRAM arrays due to the lithography process.
基金supported by the Key-Area Research and Development Program of Guangdong Province(Grant No.2021B0909060002)National Natural Science Foundation of China(Grant Nos.62204219,62204140)+1 种基金Major Program of Natural Science Foundation of Zhejiang Province(Grant No.LDT23F0401)Thanks to Professor Zhang Yishu from Zhejiang University,Professor Gao Xu from Soochow University,and Professor Zhong Shuai from Guangdong Institute of Intelligence Science and Technology for their support。
文摘Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to enhance performance.Among them,resistive random access memory(RRAM)has gained significant attention due to its numerousadvantages over traditional memory devices,including high speed(<1 ns),high density(4 F^(2)·n^(-1)),high scalability(~nm),and low power consumption(~pJ).This review focuses on the recent progress of embedded RRAM in industrial manufacturing and its potentialapplications.It provides a brief introduction to the concepts and advantages of RRAM,discusses the key factors that impact its industrial manufacturing,and presents the commercial progress driven by cutting-edge nanotechnology,which has been pursued by manysemiconductor giants.Additionally,it highlights the adoption of embedded RRAM in emerging applications within the realm of the Internet of Things and future intelligent computing,with a particular emphasis on its role in neuromorphic computing.Finally,the review discusses thecurrent challenges and provides insights into the prospects of embedded RRAM in the era of big data and artificial intelligence.
基金supported in part by the National Key R&D Program of China under Grant 2021YFB 2900304the Shenzhen Science and Technology Program under Grants KQTD20190929172545139 and ZDSYS20210623091808025.
文摘Due to the limited uplink capability in heterogeneousnetworks (HetNets), the decoupled uplinkand downlink access (DUDA) mode has recently beenproposed to improve the uplink performance. In thispaper, the random discontinuous transmission (DTX)at user equipment (UE) is adopted to reduce the interferencecorrelation across different time slots. By utilizingstochastic geometry, we analytically derive themean local delay and energy efficiency (EE) of an uplinkHetNet with UE random DTX scheme under theDUDA mode. These expressions are further approximatedas closed forms under reasonable assumptions.Our results reveal that under the DUDA mode, there isan optimal EE with respect to mute probability underthe finite local delay constraint. In addition, with thesame finite mean local delay as under the coupled uplinkand downlink access (CUDA) mode, the HetNetsunder the DUDA mode can achieve a higher EE witha lower mute probability.
基金supported by Natural Science Foundation of China(62122012,62221001)the Beijing Natural Science Foundation(L202019,L211012)the Fundamental Research Funds for the Central Universities(2022JBQY004)。
文摘Massive machine type communication aims to support the connection of massive devices,which is still an important scenario in 6G.In this paper,a novel cluster-based massive access method is proposed for massive multiple input multiple output systems.By exploiting the angular domain characteristics,devices are separated into multiple clusters with a learned cluster-specific dictionary,which enhances the identification of active devices.For detected active devices whose data recovery fails,power domain nonorthogonal multiple access with successive interference cancellation is employed to recover their data via re-transmission.Simulation results show that the proposed scheme and algorithm achieve improved performance on active user detection and data recovery.
文摘Pattem imprinting in deep sub-micron static random access memories (SRAMs) during total dose irradiation is inves- tigated in detail. As the dose accumulates, the data pattern of memory cells loading during irradiation is gradually imprinted on their background data pattern. We build a relationship between the memory cell's static noise margin (SNM) and the background data, and study the influence of irradiation on the probability density function of ASNM, which is the difference between two data sides' SNMs, to discuss the reason for pattern imprinting. Finally, we demonstrate that, for micron and deep sub-micron devices, the mechanism of pattern imprinting is the bias-dependent threshold shift of the transistor, but for a deep sub-micron device the shift results from charge trapping in the shallow trench isolation (STI) oxide rather than from the gate oxide of the micron-device.
文摘为解决海量机器类通信(mMTC,massive machine type communications)场景下,机器类通信设备(MTCD,machine type communication device)采用传统随机接入方案时,往往出现网络严重拥塞,导致大量MTCD无法成功接入网络问题,提出了一种基于前导码重传辅助的动态接入类别限制(PRT-ACB,preamble retransmission access class barring)方案。利用MTCD的前导码重传次数,将每个随机接入机会(RAO,random access opportunity)中尝试发起接入的MTCD划分为高、低优先级,结合每个RAO中负载数估计模型,分别为其设定随每个RAO中的接入负载动态变化的高、低优先级限制因子和可用前导码池,使更多MTCD能在未达到最大前导码传输次数前成功接入网络。仿真结果表明,所提方案能有效提升MTCD的接入成功概率,降低MTCD接入网络所需时延。所提方案可以作为缓解海量通信设备同时接入网络造成拥塞的一种解决方案。
基金supported by the State Key Program of the National Natural Science Foundation of China (Grant No.60836004)the National Natural Science Foundation of China (Grant Nos.61076025 and 61006070)
文摘Using computer-aided design three-dimensional (3D) simulation technology, the recovery mechanism of single event upset and the effects of spacing and hit angle on the recovery are studied. It is found that the multi-node charge collection plays a key role in recovery and shielding the charge sharing by adding guard rings. It cannot exhibit the recovery effect. It is also indicated that the upset linear energy transfer (LET) threshold is kept constant while the recovery LET threshold increases as the spacing increases. Additionally, the effect of incident angle on recovery is analysed and it is shown that a larger angle can bring about a stronger charge sharing effect, thus strengthening the recovery ability.
基金supported by Key R&D Program of China under Grant 2018YFB1801102National Natural Science Foundation of China(U1736108)+1 种基金Foundation for Innovative Research Groups of the National Natural Science Foundation of China(61621091)Tsinghua University Initiative Scientific Research Program 20193080005。
文摘We propose a pilot domain non-orthogonal multiple access(NOMA)for uplink massive devices grant-free random access scenarios in massive multiple-input multiple-output(MIMO)maritime communication systems.These scenarios are characterized by numerous devices with sporadic access behavior,and therefore only a subset of them are active.Due to massive potential devices in the network,it is infeasible to assign a unique orthogonal pilot to each device in advance.In such scenarios,pilot decontamination is a crucial problem.In this paper,the devices are randomly assigned non-orthogonal pilots which are constructed by a linear combination of some orthogonal pilots.We show that a bipartite graph can conveniently describe the interference cancellation(IC)processes of pilot decontamination.High spectrum efficiency(SE)and low outage probability can be obtained by selecting the numbers of orthogonal pilots according to the given probability distribution.Numerical evaluatioDs show that the proposed pilot domain NOMA decreases the outage probability from 20%to 2 e-12 at the SE of 4 bits/s/Hz for a single device,compared to the conventional method of slotted ALOHA with 1024 antennas at the BS,or increases the spectrum efficiency from 1.2 bits/s/Hz to 4 bit/s/Hz at the outage probability of2 e-12 in contrast with the Welch bound equality(WBE)non-orthogonal pilots.
基金supported by Key Laboratory of Universal Wireless Communications(Beijing University of Posts and Telecommunications),Ministry of Education,P.R.China,KFKT-2014103)National Science and Technology Major Project of China(No.2013ZX03006001)National Natural Science Foundation of China(61501056)
文摘In this study, an improved random access(RA) scheme for Machine-to-Machine(M2M) communications is proposed. The improved RA scheme is realized by two steps. First, the improved RA scheme achieves a reasonable resource tradeoff between physical random access channel(PRACH) and physical uplink shared channel(PUSCH). To realize a low-complexity resource allocation between PRACH and PUSCH, a boundary of traffic load is derived to divide the number of active M2 M users(UEs) into multiple intervals. The corresponding resource allocation for these intervals is determined by e NB. Then the resource allocation for other number of UEs can be obtained from the allocation of these intervals with less computation. Second, the access barring on arrival rate of new UEs is introduced in the improved RA scheme to reduce the expected delay. Numerical results show that the proposed improved RA scheme can realize a low-complexity resource allocation between PRACH and PUSCH. Meanwhile, the expected delay can be effectively reduced by access barring on arriving rate of new M2 M UEs.
基金supported by National Natural Science Foundation of China (No. 61271236)Major Projects of Natural Science Research of Jiangsu Provincial Universities (No. 17KJA510004)Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX17_0763, No.KYCX18_0907)
文摘Random access is a well-known multiple access method for uncoordinated communication nodes.Existing work mainly focuses on optimizing iterative access protocols,assuming that packets are corrupted once they are collided,or that feedback is available and can be exploited.In practice,a packet may still be able to be recovered successfully even when collided with other packets.System design and performance analysis under such a situation,particularly when the details of collision are taken into consideration,are less known.In this paper,we provide a framework for analytically evaluating the actual detection performance in a random temporal multiple access system where nodes can only transmit.Explicit expressions are provided for collision probability and signal to interference and noise ratio(SINR)when different numbers of packets are collided.We then discuss and compare two receiver options for the AP,and provide detailed receiver design for the premium one.In particular,we propose a synchronization scheme which can largely reduce the preamble length.We also demonstrate that system performance could be a convex function of preamble length both analytically and via simulation,as well as the forward error correction(FEC)coding rate.
基金supported by the National Natural Science Foundation of China (61525403)。
文摘In this paper, a random access inter-satellite ranging(RAISR) system is designed. The ranging accuracy is optimized by an algorithm to greatly improve the ranging accuracy. This paper verifies the feasibility of the RAISR system through a series of theoretical analysis, numerical simulation, hardware system design and testing. The research work brings the solution to the design and accuracy optimization problem of the RAISR system,which eliminates the main error caused by the satellite dynamic characteristics and frequency source drift of the RAISR system.The accuracy of the measurement system has been significantly improved.
基金supported by the National Natural Science Foundation of China(61501056)National Science and Technology Major Project of China(No.2016ZX03001012)the Research Fund of ZTE Corporation
文摘In the future fifth generation(5G) systems,non-orthogonal multiple access(NOMA) is a promising technology that can greatly enhance the network capacity compared to orthogonal multiple access(OMA) .In this paper,we propose a novel random access(RA) and resource allocation scheme for the coexistence of NOMA-based and OMAbased machine-to-machine(M2M) communications,which aims at improving the number of successful data packet transmissions and guaranteeing the quality of service(Qo S) (e.g.,the minimum data rate requirement) for M2 M communications.The algorithm of joint user equipment(UE) paring and power allocation is proposed for the coexisting RA(i.e.,the coexistence of NOMA-based RA and OMA-based RA) .The resource allocation for the coexisting RA is investigated,thus improving the number of successful data packet transmissions by more efficiently using the radio resources.Simulation results demonstrate that the proposed RA and resource allocation scheme outperforms the conventional RA in terms of the number of successful data packet transmissions,thus is a promising technology in future M2 M communications.
文摘This paper investigated phase change Si1Sb2Te3 material for application of chalcogenide random access memory. Current-voltage performance was conducted to determine threshold current of phase change from amorphous phase to polycrystalline phase. The film holds a threshold current about 0.155 mA, which is smaller than the value 0.31 mA of Ge2Sb2Te5 film. Amorphous Si1Sb2Te3 changes to face-centred-cubic structure at ~ 180℃ and changes to hexagonal structure at ~ 270℃. Annealing temperature dependent electric resistivity of Si1Sb2Te3 film was studied by four-point probe method. Data retention of the films was characterized as well.
基金the National Natural Science Foundation of China(Grant Nos.21773291,61904118,and 22002102)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20190935 and BK20190947)+3 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant Nos.19KJA210005,19KJB510012,19KJB120005,and 19KJB430034)the Fund from the Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices(Grant No.SZS201812)the Science Fund from the Jiangsu Key Laboratory for Environment Functional Materialsthe State Key Laboratory of Transducer Technology,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences.
文摘The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,computing devices use the von Neumann architecture with separate computing and memory units,which exposes the shortcomings of“memory bottleneck”.Nonvolatile memristor can realize data storage and in-memory computing at the same time and promises to overcome this bottleneck.Phase-change random access memory(PCRAM)is called one of the best solutions for next generation non-volatile memory.Due to its high speed,good data retention,high density,low power consumption,PCRAM has the broad commercial prospects in the in-memory computing application.In this review,the research progress of phase-change materials and device structures for PCRAM,as well as the most critical performances for a universal memory,such as speed,capacity,and power consumption,are reviewed.By comparing the advantages and disadvantages of phase-change optical disk and PCRAM,a new concept of optoelectronic hybrid storage based on phase-change material is proposed.Furthermore,its feasibility to replace existing memory technologies as a universal memory is also discussed as well.
基金supported by the National Natural Science Foundation of China(No.11705276)the West Light Foundation of the Chinese Academy of Sciences(No.CAS-LWC-2017-2)
文摘A magnetoresistive random-access memory(MRAM) device was irradiated by ^(60) Co c-rays and an electron beam.The synergistic effect of this on the MRAM was tested with an additional magnetic field during irradiation,from which the total ionizing dose(TID) and the synergistic damage mechanism of MRAM were analyzed.In addition,DC,AC,and functional parameters of the memory were tested under irradiation and annealing via a very large-scale integrated circuit test system.The radiation-sensitive parameters were obtained through analyzing the data.Because of the magnetic field applied on the MRAM while testing the synergistic effects,shallow trench isolation leakage and Frenkel–Poole emission due to synergistic effects were smaller than that of TID,and hence radiation damage of the synergistic effects was also lower.
基金supported by the State Key Project of Fundamental Research of Ministry of Science and Technology,China(Grant No.2010CB934400)the National Natural Science Foundation of China(Grant Nos.51229101 and 11374351)
文摘Recent progresses in magnetic tunnel junctions with perpendicular magnetic anisotropy (PMA) are reviewed and summarized. At first, the concept and source of perpendicular magnetic anisotropy (PMA) are introduced. Next, a historical overview of PMA materials as magnetic electrodes, such as the RE-TM alloys TbFeCo and GdFeCo, novel tetragonal manganese alloys Mn-Ga, L10-ordered (Co, Fe)/Pt alloy, multilayer film [Co, Fe, CoFe/Pt, Pd, Ni, AU]N, and ultra-thin magnetic metal/oxidized barrier is offered. The other part of the article focuses on the optimization and fabrication of CoFeB/MgO/CoFeB p-MTJs, which is thought to have high potential to meet the main demands for non-volatile magnetic random access memory.
基金supported in part by Key R&D Program of Zhejiang (No. 2022C03078)National Natural Science Foundation of China (No. U20A20158)+1 种基金National Key R&D Program of China (No. 2018YFB1801104)Ningbo S&T Major Project (No. 2019B10079)。
文摘With energy harvesting capability, the Internet of things(IoT) devices transmit data depending on their available energy, which leads to a more complicated coupling and brings new technical challenges to delay optimization. In this paper,we study the delay-optimal random access(RA) in large-scale energy harvesting IoT networks. We model a two-dimensional Markov decision process(MDP)to address the coupling between the data and energy queues, and adopt the mean field game(MFG) theory to reveal the coupling among the devices by utilizing the large-scale property. Specifically, to obtain the optimal access strategy for each device, we derive the Hamilton-Jacobi-Bellman(HJB) equation which requires the statistical information of other devices.Moreover, to model the evolution of the states distribution in the system, we derive the Fokker-PlanckKolmogorov(FPK) equation based on the access strategy of devices. By solving the two coupled equations,we obtain the delay-optimal random access solution in an iterative manner with Lax-Friedrichs method. Finally, the simulation results show that the proposed scheme achieves significant performance gain compared with the conventional schemes.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA09020402the National Integrate Circuit Research Program of China under Grant No 2009ZX02023-003+1 种基金the National Natural Science Foundation of China under Grant Nos 61261160500,61376006,61401444 and 61504157the Science and Technology Council of Shanghai under Grant Nos 14DZ2294900,15DZ2270900 and 14ZR1447500
文摘An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current.