This paper introduces two kinds of methods with high accuracy for fi-nite element probability computing method,by which the function value on one or afew nodes can be calculated without forming the total stiffness mat...This paper introduces two kinds of methods with high accuracy for fi-nite element probability computing method,by which the function value on one or afew nodes can be calculated without forming the total stiffness matrix.展开更多
The second-order random walk has recently been shown to effectively improve the accuracy in graph analysis tasks.Existing work mainly focuses on centralized second-order random walk(SOW)algorithms.SOW algorithms rely ...The second-order random walk has recently been shown to effectively improve the accuracy in graph analysis tasks.Existing work mainly focuses on centralized second-order random walk(SOW)algorithms.SOW algorithms rely on edge-to-edge transition probabilities to generate next random steps.However,it is prohibitively costly to store all the probabilities for large-scale graphs,and restricting the number of probabilities to consider can negatively impact the accuracy of graph analysis tasks.In this paper,we propose and study an alternative approach,SOOP(second-order random walks with on-demand probability computation),that avoids the space overhead by computing the edge-to-edge transition probabilities on demand during the random walk.However,the same probabilities may be computed multiple times when the same edge appears multiple times in SOW,incurring extra cost for redundant computation and communication.We propose two optimization techniques that reduce the complexity of computing edge-to-edge transition probabilities to generate next random steps,and reduce the cost of communicating out-neighbors for the probability computation,respectively.Our experiments on real-world and synthetic graphs show that SOOP achieves orders of magnitude better performance than baseline precompute solutions,and it can efficiently computes SOW algorithms on billion-scale graphs.展开更多
The problem of polymer chains near an impenetrable plane is investigated by means of the probability method. It is shown that the 2kth moment of the reduced normal component of the end-to-end distance A2k only depends...The problem of polymer chains near an impenetrable plane is investigated by means of the probability method. It is shown that the 2kth moment of the reduced normal component of the end-to-end distance A2k only depends on the reduced distance to the plane of the first segment AZ0, here, A=l- 1· , n is the chain length, l is the bond length and fixed to be unity, which can be expressed as A2k=f(AZ0). When AZ0≈ 0, A2k is the maximum(A2k=k!), then it decreases rapidly and soon reaches the minimum with the increase of AZ0, afterwards A2k goes up gradually and reaches the limit value [(2k- 1)× (2k- 3)×…× 1]/2k when AZ0 is large enough. Suggesting that the polymer chain can be significantly elongated for small Z0 and contracted for an intermediate range of Z0 due to the barrier. The distribution of the end-to-end distance also depends on the distance Z0 to the plane of the first segment.展开更多
在MIMO-OFDM水声通信系统中,由于信道间的相互干扰和水声信道严重时延扩展产生的频率选择性衰落,系统的通信误码率较高。针对这一问题,研究了空频编码的MIMO-OFDM通信,提出空频迭代信道估计与均衡(Spatial Frequency Iterative Channel ...在MIMO-OFDM水声通信系统中,由于信道间的相互干扰和水声信道严重时延扩展产生的频率选择性衰落,系统的通信误码率较高。针对这一问题,研究了空频编码的MIMO-OFDM通信,提出空频迭代信道估计与均衡(Spatial Frequency Iterative Channel Estimation and Equalization,SFICEE)方法。该方法通过载波间的空频正交性进行各收发阵元对的信道估计,并通过空频均衡获得符号初始估计,迭代更新信道估计,而后通过符号后验软信息反馈进行迭代空频软均衡。仿真结果表明,当误码率为10^(-3)时,文中所提出的SFICEE方法经过二次迭代与STBC方法相比具有4.8 d B的性能增益,相对于SFBC方法有2.8 d B的性能提升。当输入信噪比相同时,文中所提出方法的星座图更加收敛,可以更好地降低水下通信系统的误码率。展开更多
Simulation of flow and transport through rough walled rock fractures is investigated using the latticeBoltzmann method (LBM) and random walk (RW), respectively. The numerical implementation isdeveloped and validat...Simulation of flow and transport through rough walled rock fractures is investigated using the latticeBoltzmann method (LBM) and random walk (RW), respectively. The numerical implementation isdeveloped and validated on general purpose graphic processing units (GPGPUs). Both the LBM and RWmethod are well suited to parallel implementation on GPGPUs because they require only next-neighbourcommunication and thus can reduce expenses. The LBM model is an order of magnitude faster onGPGPUs than published results for LBM simulations run on modern CPUs. The fluid model is verified forparallel plate flow, backward facing step and single fracture flow; and the RWmodel is verified for pointsourcediffusion, Taylor-Aris dispersion and breakthrough behaviour in a single fracture. Both algorithmsplace limitations on the discrete displacement of fluid or particle transport per time step to minimise thenumerical error that must be considered during implementation. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
基金the National Natural Scinence Foundation of China
文摘This paper introduces two kinds of methods with high accuracy for fi-nite element probability computing method,by which the function value on one or afew nodes can be calculated without forming the total stiffness matrix.
文摘The second-order random walk has recently been shown to effectively improve the accuracy in graph analysis tasks.Existing work mainly focuses on centralized second-order random walk(SOW)algorithms.SOW algorithms rely on edge-to-edge transition probabilities to generate next random steps.However,it is prohibitively costly to store all the probabilities for large-scale graphs,and restricting the number of probabilities to consider can negatively impact the accuracy of graph analysis tasks.In this paper,we propose and study an alternative approach,SOOP(second-order random walks with on-demand probability computation),that avoids the space overhead by computing the edge-to-edge transition probabilities on demand during the random walk.However,the same probabilities may be computed multiple times when the same edge appears multiple times in SOW,incurring extra cost for redundant computation and communication.We propose two optimization techniques that reduce the complexity of computing edge-to-edge transition probabilities to generate next random steps,and reduce the cost of communicating out-neighbors for the probability computation,respectively.Our experiments on real-world and synthetic graphs show that SOOP achieves orders of magnitude better performance than baseline precompute solutions,and it can efficiently computes SOW algorithms on billion-scale graphs.
文摘The problem of polymer chains near an impenetrable plane is investigated by means of the probability method. It is shown that the 2kth moment of the reduced normal component of the end-to-end distance A2k only depends on the reduced distance to the plane of the first segment AZ0, here, A=l- 1· , n is the chain length, l is the bond length and fixed to be unity, which can be expressed as A2k=f(AZ0). When AZ0≈ 0, A2k is the maximum(A2k=k!), then it decreases rapidly and soon reaches the minimum with the increase of AZ0, afterwards A2k goes up gradually and reaches the limit value [(2k- 1)× (2k- 3)×…× 1]/2k when AZ0 is large enough. Suggesting that the polymer chain can be significantly elongated for small Z0 and contracted for an intermediate range of Z0 due to the barrier. The distribution of the end-to-end distance also depends on the distance Z0 to the plane of the first segment.
文摘在MIMO-OFDM水声通信系统中,由于信道间的相互干扰和水声信道严重时延扩展产生的频率选择性衰落,系统的通信误码率较高。针对这一问题,研究了空频编码的MIMO-OFDM通信,提出空频迭代信道估计与均衡(Spatial Frequency Iterative Channel Estimation and Equalization,SFICEE)方法。该方法通过载波间的空频正交性进行各收发阵元对的信道估计,并通过空频均衡获得符号初始估计,迭代更新信道估计,而后通过符号后验软信息反馈进行迭代空频软均衡。仿真结果表明,当误码率为10^(-3)时,文中所提出的SFICEE方法经过二次迭代与STBC方法相比具有4.8 d B的性能增益,相对于SFBC方法有2.8 d B的性能提升。当输入信噪比相同时,文中所提出方法的星座图更加收敛,可以更好地降低水下通信系统的误码率。
文摘Simulation of flow and transport through rough walled rock fractures is investigated using the latticeBoltzmann method (LBM) and random walk (RW), respectively. The numerical implementation isdeveloped and validated on general purpose graphic processing units (GPGPUs). Both the LBM and RWmethod are well suited to parallel implementation on GPGPUs because they require only next-neighbourcommunication and thus can reduce expenses. The LBM model is an order of magnitude faster onGPGPUs than published results for LBM simulations run on modern CPUs. The fluid model is verified forparallel plate flow, backward facing step and single fracture flow; and the RWmodel is verified for pointsourcediffusion, Taylor-Aris dispersion and breakthrough behaviour in a single fracture. Both algorithmsplace limitations on the discrete displacement of fluid or particle transport per time step to minimise thenumerical error that must be considered during implementation. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.