期刊文献+
共找到30,774篇文章
< 1 2 250 >
每页显示 20 50 100
Effect and Mechanism of Rare Earth Hydrotalcite Inhibiting Coal Spontaneous Combustion
1
作者 张小娟 LIU Bo +1 位作者 罗振敏 SUN Lu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期50-59,共10页
A hydrotalcite(layered double hydroxide, LDH) inhibitor which is suitable for the whole process of coal spontaneous combustion and a LDH inhibitor containing rare earth lanthanum elements were prepared. The inhibition... A hydrotalcite(layered double hydroxide, LDH) inhibitor which is suitable for the whole process of coal spontaneous combustion and a LDH inhibitor containing rare earth lanthanum elements were prepared. The inhibition effect and mechanism were analyzed by scanning electron microscopy(SEM),X-ray diffraction(XRD), thermal performance analysis, in-situ diffuse reflectance infrared spectroscopy and temperature-programmed experiment. The results have shown that the inhibitor containing lanthanum can play a good inhibitory role in every stage of coal oxidation. During the slow oxidation of coal samples, the inhibitor containing lanthanum ions can slow down the oxidation process of coal and increase the initial temperature of coal spontaneous combustion. At the same time, because the hydroxyl groups in LDHs are connected with-COO-groups on the coal surface through hydrogen bonds, the stability of coal is improved. With the increase of temperature, LDHs can remove interlayer water molecules and reduce the surface temperature of coal. CO release rate of coal samples decreases significantly after adding inhibitor containing lanthanum element, and the maximum inhibition rate of the inhibitor is 58.1%. 展开更多
关键词 rare earth HYDROTALCITE coal spontaneous combustion MECHANISM
原文传递
Wetting front migration model of ion-adsorption rare earth during the multi-hole unsaturated liquid injection
2
作者 Yu Wang Xiaojun Wang +8 位作者 Yuchen Qiu Hao Wang Gang Li Kaijian Hu Wen Zhong Zhongqun Guo Bing Li Chunlei Zhang Guangxiang Ye 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期483-496,共14页
In the process of ion-adsorption rare earth ore leaching,the migration characteristics of the wetting front in multi-hole injection holes and the influence of wetting front intersection effect on the migration distanc... In the process of ion-adsorption rare earth ore leaching,the migration characteristics of the wetting front in multi-hole injection holes and the influence of wetting front intersection effect on the migration distance of wetting fronts are still unclear.Besides,wetting front migration distance and leaching time are usually required to optimize the leaching process.In this study,wetting front migration tests of ionadsorption rare earth ores during the multi-hole fluid injection(the spacing between injection holes was 10 cm,12 cm and 14 cm)and single-hole fluid injection were completed under the constant water head height.At the pre-intersection stage,the wetting front migration laws of ion-adsorption rare earth ores during the multi-hole fluid injection and single-hole fluid injection were identical.At the postintersection stage,the intersection accelerated the wetting front migration.By using the Darcy’s law,the intersection effect of wetting fronts during the multi-hole liquid injection was transformed into the water head height directly above the intersection.Finally,based on the Green-Ampt model,a wetting front migration model of ion-adsorption rare earth ores during the multi-hole unsaturated liquid injection was established.Error analysis results showed that the proposed model can accurately simulate the infiltration process under experimental conditions.The research results enrich the infiltration law and theory of ion-adsorption rare earth ores during the multi-hole liquid injection,and this study provides a scientific basis for optimizing the liquid injection well pattern parameters of ion-adsorption rare earth in situ leaching in the future. 展开更多
关键词 Ion-adsorption rare earth ore Multi-hole unsaturated liquid injection In situ leaching Intersection effect Calculation model
下载PDF
Differential Expression Analysis of Proteins Regulated by Rare Earth Cerium in Soybean Leaves at Seedling Stage
3
作者 Ren Hongyu Zhang Tianren +3 位作者 Miao Yanli Li Haoyang Zhang Shuying Zhang Xingwen 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第1期42-52,共11页
This study was to explore the functional mechanism of rare earth regulating soybean leaves and the characteristics and functions of differentially expressed proteins under the regulation of rare earth. In this study, ... This study was to explore the functional mechanism of rare earth regulating soybean leaves and the characteristics and functions of differentially expressed proteins under the regulation of rare earth. In this study, Dongnong 42 was used as material, and 30 mg·L^(-1) CeCl_(3) solution was sprayed on soybean leaves at the seedling stage. Tandem mass tag(TMT) quantitative proteomics technique and bioinformatics analysis were used to identify soybean leaf proteins. A total of 8 510 proteins were identified, and 127 differentially expressed proteins(DEPs) in response to rare earth cerium regulation were identified, among which 64 were upregulated and 63 were down-regulated. The gene ontology(GO) annotation indicated that DEPs were mainly involved in metabolic process, cellular process, response to stimulus, biological regulation, and response to a stimulus;DEPs in cell module categories were mainly involved in cells, cell part, organelle, membrane, membrane part, organelle par, and protein-containing complex;DEPs in molecular functional categories were mainly involved in catalytic activity, binding and antioxidant activity. Kyoto encyclopedia of genes and genomes(KEGG) pathway significantly enriched starch and sucrose metabolism, glycolysis/gluconeogenesis, galactose metabolism, pentose phosphate pathway, and MAPK signaling pathway-plant. These DEPs were mainly involved in photosynthesis, glucose metabolism and stress response. Forty-six differential protein interaction networks were identified by protein interaction network analysis. This experiment provided a reference for studies of the mechanism of rare earth cerium regulating soybean leaf function from the proteomic perspective. 展开更多
关键词 rare earth soybean proteomics tandem mass tag(TMT)
下载PDF
Influence of rare earth Ce on hot deformation behavior of as-cast Mn18Cr18N high nitrogen austenitic stainless steel 被引量:4
4
作者 Yushuo Li Yanwu Dong +3 位作者 Zhouhua Jiang Qingfei Tang Shuyang Du Zhiwen Hou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期324-334,共11页
The hot deformation behavior of Mn18Cr18N and Mn18Cr18N+Ce high nitrogen austenitic stainless steels at 1173-1473 K and 0.01-1 s^(-1) were investigated by thermal compression tests.The influence mechanism of Ce on the... The hot deformation behavior of Mn18Cr18N and Mn18Cr18N+Ce high nitrogen austenitic stainless steels at 1173-1473 K and 0.01-1 s^(-1) were investigated by thermal compression tests.The influence mechanism of Ce on the hot deformation behavior was analyzed by Ce-containing inclusions and segregation of Ce.The results show that after the addition of Ce,large,angular,hard,and brittle inclusions(TiN-Al_(2)O_(3),TiN,and Al_(2)O_(3)) can be modified to fine and dispersed Ce-containing inclusions(Ce-Al-O-S and TiN-Ce-Al-O-S).During the solidification,Ce-containing inclusions can be used as heterogeneous nucleation particles to refine as-cast grains.During the hot deformation,Ce-containing inclusions can pin dislocation movement and grain boundary migration,induce dynamic recrystallization(DRX)nucleation,and avoid the formation and propagation of micro cracks and gaps.In addition,during the solidification,Ce atoms enrich at the front of solid-li-quid interface,resulting in composition supercooling and refining the secondary dendrites.Similarly,during the hot deformation,Ce atoms tend to segregate at the boundaries of DRX grains,inhibiting the growth of grains.Under the synergistic effect of Ce-containing inclusions and Ce segregation,although the hot deformation resistance and hot deformation activation energy are improved,DRX is more likely to occur and the size of DRX grains is significantly refined,and the problem of hot deformation cracking can be alleviated.Finally,the microhardness of the samples was measured.The results show that compared with as-cast samples,the microhardness of hot-deformed samples increases signific-antly,and with the increase of DRX degree,the microhardness decreases continuously.In addition,Ce can affect the microhardness of Mn18Cr18N steel by affecting as-cast and hot deformation microstructures. 展开更多
关键词 rare earth hot deformation Mn18Cr18N steel non-metallic inclusions element segregation MICROHARDNESS
下载PDF
Development and characteristics of a low rare-earth containing magnesium alloy with high strength-ductility synergy 被引量:1
5
作者 Zijian Yu Xi Xu +6 位作者 Kang Shi Baotian Du Xiuzhu Han Tao Xiao Shubo Li Ke Liu Wenbo Du 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1629-1642,共14页
In this study,we successfully developed a low RE containing Mg-3Y-2Gd-1Nd-0.5Zr(wt%)alloy with high strength-ductility synergy by combined processes of hot extrusion,hot rolling and ageing.This alloy exhibits an excel... In this study,we successfully developed a low RE containing Mg-3Y-2Gd-1Nd-0.5Zr(wt%)alloy with high strength-ductility synergy by combined processes of hot extrusion,hot rolling and ageing.This alloy exhibits an excellent strength-ductility balance(UTS of 345±2.0 MPa,TYS of 301±5.0 MPa and EL of 9.2±1.9%),which is better than that of many Mg-RE wrought alloys with higher RE concentration and even comparable to that of 6061 Al wrought alloy.A long-range chain-like structure consisting ofβphase,βH phase,βM phase and zig-zag atomic columns is observed for the first time in the studied alloy.The combined process of hot extrusion and hot rolling boosts the formation of deformed grains and low angle grain boundaries,and makes the deformed grains dominate in the alloy strengthening.Under this circumstance,the following ageing generates a novel heterogeneous structure comprising the long-range chain-like structure with broad interparticle spacing and the spacious precipitate-free zones in the deformed grains,which plays a key role in the concurrent strengthening and toughening of the alloy.The present study demonstrates that the deformed grains with long-range chain-like structures and precipitate-free zones is desirable microstructure for the low RE containing Mg alloys to achieve high strength-ductility synergy. 展开更多
关键词 Magnesium alloy Microstructure Mechanical properties rare earth
下载PDF
Effects of Rare-earth and Microalloying Elements on the Microstructure Characteristics of Hypereutectoid Rails
6
作者 戴宇恒 ZHAO Wenqian +1 位作者 包喜荣 陈林 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期682-688,共7页
We performed thermal simulation experiments of double-pass deformation of hypereutectoid rails with different microalloying elements at a cooling rate of 1℃/s and deformation of 80%to explore the influence of rare-ea... We performed thermal simulation experiments of double-pass deformation of hypereutectoid rails with different microalloying elements at a cooling rate of 1℃/s and deformation of 80%to explore the influence of rare-earth and microalloying elements on the structure of hypereutectoid rails and optimize the composition design of hypereutectoid rails.Scanning electron microscopy,transmission electron microscopy,X-ray diffraction,and other characterization techniques were employed to quantitatively analyzed the effects of different microalloying elements,including rare-earth elements,on pearlite lamellar spacing,cementite characteristics,and dislocation density.It was found that the lamellar spacing was reduced by adding various microalloying elements.Cementite lamellar thickness decreased with the refinement of pearlite lamellar spacing while the cementite content per unit volume increased.Local cementite spheroidization,dispersed in the ferrite matrix in granular form and thus playing the role of dispersion strengthening,was observed upon adding cerium(Ce).The contributions of dislocation density to the alloy strength of four steel sheet samples with and without the addition of nickel,Ce,and Ce–copper(Cu)composite were 26,27,32,and 37 MPa,respectively,indicating that the Ce–Cu composite had the highest dislocation strengthening effect.The Ce–Cu composite has played a meaningful role in the cementite characteristics and dislocation strengthening,which provides a theoretical basis for optimizing the composition design of hypereutectoid rails in actual production conditions. 展开更多
关键词 microalloying elements rare earth hypereutectoid rail CEMENTITE DISLOCATION
原文传递
Effect of rare earth on morphology and dispersion of TiB2 phase in Al-Ti-B alloy refiner
7
作者 Zhi-qiang Chen Wen-xin Hu +1 位作者 Lei Shi Wei Wang 《China Foundry》 SCIE CAS CSCD 2023年第2期115-124,共10页
To investigate the effect of rare earth on size and distribution of TiB2 phase in aluminum alloy refiner,Al-5Ti-1B-RE master alloy was fabricated,and its microstructure and phase constitutions were investigated by the... To investigate the effect of rare earth on size and distribution of TiB2 phase in aluminum alloy refiner,Al-5Ti-1B-RE master alloy was fabricated,and its microstructure and phase constitutions were investigated by the combination of first principles calculations and experimental investigation.The calculated results reveal that Ce has the most effective modification ability due to the most positive adsorption energy and the largest charge transfer value compared with other rare earth elements.Results of experimental investigation indicate that the addition of rare earth in the Al-5Ti-1B alloys can greatly refine the particle size of TiB2,improve the distribution of particles and lead to better refinement effect than that of the Al-5Ti-1B alloys without rare earth.Moreover,Ce has the best optimization effect,which agrees well with the calculated results. 展开更多
关键词 Al-Ti-B refiner rare earth TIB2 distribution
下载PDF
Effect of surfactant addition on leaching process of weathered crust elution-deposited rare earth ores with magnesium sulfate
8
作者 Fang Zhou Lisen Zhang +2 位作者 Zhiwei Wang Yixin Zhang Ruan Chi 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第8期1045-1053,共9页
Surfactants were proposed to be added into magnesium sulfate solution to improve the leaching process of weathered crust elution-deposited rare earth ores(WREOs).Effects of surfactants and their concentration on the s... Surfactants were proposed to be added into magnesium sulfate solution to improve the leaching process of weathered crust elution-deposited rare earth ores(WREOs).Effects of surfactants and their concentration on the seepage of leaching solutions and the leaching efficiency of rare earth(RE)and aluminum(Al)were investigated,and the leaching kinetics,the mass transfer process,the adhesion work and the adhesion work reduction factor were analyzed to reveal its strengthening leaching mechanism.The results show that cetyltrimethylammonium bromide(CTAB)has a better strengthening effect on the leaching process than dodecyl trimethyl ammonium bromide(DTAB),sodium dodecyl sulfate(SDS),sodium oleate and oleic acid.In the presence of 0.04%CTAB in 0.2 mol/L solution,the permeability coefficient of WREOs increases from 0.945×10^(-5)to 1.640×10^(-5)cm·s^(-1),and the leaching efficiency of RE increases from 80%to 90%,confirming the promotion of surfactants on the leaching process of WREOs.Kinetic analysis shows that the leaching process conforms to the inner diffusion control model,and the leaching kinetics equations of RE and Al related to CTAB content are obtained.Mass transfer discussion shows a smaller height equivalent to theoretical plate(HETP)of RE and Al at CTAB content of 0.04%,suggesting the higher mass transfer efficiency here.According to the interfacial properties of leaching solutions,the calculated adhesion work and the adhesion work reduction factor further demonstrate the strengthening leaching effect of CTAB on the leaching process of WREOs. 展开更多
关键词 Weathered crust elution-deposited rare earth ores SURFACTANT Kinetics Mass transfer
下载PDF
Geochemical characterization of rare earth elements in sediment profiles from the Oualida lagoon(Morocco)
9
作者 Nezha Mejjad Abdelmourhit Laissaoui +2 位作者 Ouafa El Hammoumi Ahmed Fekri Hamid Amsil 《Acta Geochimica》 EI CAS CSCD 2023年第6期1051-1064,共14页
The present work assesses the temporal distribution pattern and geochemical changes of rare earth elements and Yttrium, Scandium, Thorium, and Uranium delivery into the Oualidia lagoon. Two sediment cores were retriev... The present work assesses the temporal distribution pattern and geochemical changes of rare earth elements and Yttrium, Scandium, Thorium, and Uranium delivery into the Oualidia lagoon. Two sediment cores were retrieved from the Oualidia lagoon and analyzed using neutron activation analysis. The results indicated that heavy rare earth elements are slightly enriched the sediment cores over light rare earth elements. The highest values of REEs were recorded in the top layers of the cores and depleted with depth, suggesting a possible change in factors controlling their accumulation, including mechanical, chemical, and environmental parameters such as weathering intensity, grain size, and Fe-Mn oxides. The sediments display positive Ce anomalies, which are probably related to the submarine weathering process and detrital input. Noting also the variation of hydrodynamics conditions and confinement of the upstream part of the lagoon played a key role in changing the sediment origins.Thus, further investigation of REEs origin in the Oualidia lagoon sediment is required to identify their sources,provenances, and the factors controlling their spatial and vertical distributions. However, these results provide baseline data of occurring changes in REEs geochemical composition and constitute a typical study case to understand the link between sedimentary and geochemistry processes in a lagoonal ecosystem. 展开更多
关键词 Geochemical characterization rare earth elements SEDIMENT Oualidia lagoon
下载PDF
Rare earth elemental and Sr isotopic evidence for seawater intrusion event of the Songliao Basin 91 million years ago
10
作者 Yu-Ke Liu Hua-jian Wang +5 位作者 Jin-You Zhang Zhen-Wu Liu Fa-Zi Chen Xiao-Mei Wang Shui-Chang Zhang He Liu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1347-1362,共16页
Petrogenesis of lacustrine dolostone is closely related with paleo-lake water conditions.Here we report the high spatial-resolution petrographic and geochemical results of a lacustrine dolomite nodule from the Qingsha... Petrogenesis of lacustrine dolostone is closely related with paleo-lake water conditions.Here we report the high spatial-resolution petrographic and geochemical results of a lacustrine dolomite nodule from the Qingshankou Formation,the Songliao Basin.Sedimentary and elemental signatures confirm the protogenetic origin of this nodule and its effectiveness in recording geochemical characteristics of paleo-lake water during dolomitization.The low Y/Ho ratios,middle rare earth element(MREE)enrichment and subtle positive Eu anomalies within the nodule indicate a fresh water source.However,the Sr isotope values in the core of the nodule(0.7076-0.7080)are close to contemporaneous seawater(0.7074),yet different from the modern river(0.7120)and the host black shale(0.7100).On the premise of excluding the influence of hydrothermal fluids,the significantly low strontium isotope values of the lacustrine dolomite might be caused by seawater interference during dolomitization.Our findings demonstrate that lacustrine dolomite within black shales is not only a faithful tracer of diagenetic water environment,but also a novel and easily identified mineralogical evidence for episodic seawater intrusion event(91 Ma)in the Songliao Basin,which supplements other paleontological and geochemical evidence. 展开更多
关键词 Songliao Basin Lacustrine dolostone Seawater intrusion rare earth elements Strontium isotope
下载PDF
Microstructure and mechanical properties of a cast heat-resistant rare-earth magnesium alloy
11
作者 Xiao-ping Zhu Jun-qing Yao +6 位作者 Hai-long Wu Xin-wang Liu Hua Liu Zi-tian Fan Shu-lin Lü Kai Wang Zi-dong Wang 《China Foundry》 SCIE CAS CSCD 2023年第4期289-298,共10页
Microstructure,mechanical properties and phase transformation of a heat-resistant rare-earth(RE)Mg-16.1Gd-3.5Nd-0.38Zn-0.26Zr-0.15Y(wt.%)alloy were investigated.The as-cast alloy is composed of equiaxedα-Mg matrix,ne... Microstructure,mechanical properties and phase transformation of a heat-resistant rare-earth(RE)Mg-16.1Gd-3.5Nd-0.38Zn-0.26Zr-0.15Y(wt.%)alloy were investigated.The as-cast alloy is composed of equiaxedα-Mg matrix,net-shaped Mg5RE and Zr-rich phases.According to aging hardening curves and tensile properties variation,the optimized condition of solution treatment at 520℃for 8 h and subsequent aging at 204℃for 12 h was selected.The continuous secondary Mg5RE phase predominantly formed at grain boundaries during solidification transforms to residual discontinuousβ-Mg5RE phase and fine cuboid REH2particles after heat treatment.The annealed alloy exhibits good comprehensive tensile property at 350℃,with ultimate tensile strength of 153 MPa and elongation to fracture of 6.9%.Segregation of RE elements and eventually RE-rich precipitation at grain boundaries are responsible for the high strength at elevated temperature. 展开更多
关键词 heat-resistant magnesium alloy rare earth microstructure phase transformation tensile property strengthening
下载PDF
Effect of particle gradation on pore structure and seepage law of solution in weathered crust elution-deposited rare earth ores
12
作者 Defeng Liu Wenxin Yan +1 位作者 Zhenyue Zhang Ruan Chi 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第10期1261-1272,共12页
Both CT and Avizo software were used to explore the effect of particle gradation on the evolution characteristics of pore structure and seepage paths in weathered crust elution-deposited rare earth ores during leachin... Both CT and Avizo software were used to explore the effect of particle gradation on the evolution characteristics of pore structure and seepage paths in weathered crust elution-deposited rare earth ores during leaching.The results showed that the pore areas in four kinds of ore samples before leaching were mainly concentrated in 10^(4)–10^(7)μm^(2),whose pore quantities accounted for 96.89%,94.94%,90.48%,and 89.45%,respectively,while the corresponding pore volume only accounted for 30.74%,14.55%,7.58%,and 2.84%of the total pore volume.With the decrease of fractal dimension,the average pore throat length increased,but pore throat quantities,the average pore throat radius and coordination number decreased.Compared with that before leaching,the change degree of pore structure during leaching increased with the fractal dimension decreasing.For example,the reduction rate of the average coordination number of ore samples was 14.36%,21.30%,28.00%,and 32.90%,respectively.Seepage simulation results indicated that seepage paths were uniformly distributed before leaching while the streamline density and seepage velocity increased with the fractal dimension decreasing.Besides,the phenomenon of the streamline interruption gradually reduced during leaching while preferential seepage got more obvious with the decrease of the fractal dimension. 展开更多
关键词 Weathered crust elution-deposited rare earth ores Particle gradation Pore structure Seepage law Fractal dimension
下载PDF
Effects of Rare Earth Lanthanum and Cerium on Key Enzyme Activi-ties of Soybean Nitrogen Metabolism
13
作者 Ren Hong-yu Zhang Shu-ying +3 位作者 Zhang Tian-ren Wang Wen-bo Li Hao-yang Zhang Xing-wen 《Journal of Northeast Agricultural University(English Edition)》 CAS 2023年第1期28-36,共9页
In this study,the typical northeast soybean varieties Dongnong 42(high protein),Dongnong 47(high fat)and Dongnong 52(mixed-use)were used as experimental materials and planted in pots.Foliar spraying 100,150 and 200 mg... In this study,the typical northeast soybean varieties Dongnong 42(high protein),Dongnong 47(high fat)and Dongnong 52(mixed-use)were used as experimental materials and planted in pots.Foliar spraying 100,150 and 200 mg•L^(-1)LaCl_(3)solution,30,60 and 90 mg•L^(-1)CeCl_(3)solution and 40,60 and 70 mg•L^(-1)LaCl_(3)+CeCl_(3)mixed solution.To study the effects of different types and concentrations of rare earth on nitrate reductase activity,glutamine synthetase activity of soybean leaves and protein content of soybean grains.The results showed that spraying appropriate concentration of rare earth solution on the leaves could increase the activities of nitrate reductase and glutamine synthase in soybean functional leaves and the protein content of soybean grains.The protein content of the three types of soybean grains was significantly positively correlated with the activity of nitrate reductase and glutamine synthetase in the leaves. 展开更多
关键词 rare earth SOYBEAN nitrate reductase glutamine synthetase protein
下载PDF
Rare earth alloy nanomaterials in electrocatalysis
14
作者 Yifei Li Xilin Yuan +5 位作者 Ping Wang Lulin Tang Miao He Pangen Li Jiang Li Zhenxing Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期574-594,I0014,共22页
With the rapid development of society and economy, the excessive consumption of fossil energy has led to the global energy and environment crisis. In order to explore the sustainable development of new energy, researc... With the rapid development of society and economy, the excessive consumption of fossil energy has led to the global energy and environment crisis. In order to explore the sustainable development of new energy, research based on electrocatalysis has attracted extensive attention in the academic circle. The main challenge in this field is to develop nano-catalysts with excellent electrocatalytic activity and selectivity for target products. The state of the active site in catalyst plays a decisive role in the activity and selectivity of the reaction. In order to design efficient and excellent catalysts, it is an effective means to adjust the electronic structure of catalysts. Electronic effects are also called ligand effects. By alloying with rare earth(RE) elements, electrons can be redistributed between RE elements and transition metal elements, achieving accurate design of the electronic structure of the active site in the alloy. Because of the unique electronic structure of RE, it has been paid attention in the field of catalysis. The outermost shell structure of RE elements is basically the same as that of the lower shell, except that the number of electrons in the 4f orbital is different, but the energy level is similar, so their properties are very similar. When RE elements form compounds, both the f electrons in the outermost shell and the d electrons in the lower outer shell can participate in bonding. In addition, part of the 4f electrons in the third outer shell can also participate in bonding.In order to improve the performance of metal catalysts, alloying provides an effective method to design advanced functional materials. RE alloys can integrate the unique electronic structure and catalytic behavior of RE elements into metal materials, which not only provides an opportunity to adjust the electronic structure and catalytic activity of the active component, but also enhances the structural stability of the alloy and is expected to significantly improve the catalytic performance of the catalyst. From the perspective of electronic and catalytic activity, RE elements have unique electronic configuration and lanthanide shrinkage effect. Alloying with RE elements will make the alloy have more abundant electronic structure, activity, and spatial arrangement, effectively adjusting the reaction kinetics of the electrochemical process of the catalyst. In this paper, the composition,structure, synthesis of RE alloys and their applications in the field of electrocatalysis are summarized, including the hydrogen evolution reaction, the oxygen evolution reaction, the oxygen reduction reaction, the methanol oxidation reaction, the ethanol oxidation reaction, and other catalytic reactions. At the same time, the present challenges of RE alloy electrocatalytic materials are summarized and their future development direction is pointed out. In the field of electrocatalysis, the cost of catalyst is too high and the stability is not strong. Therefore, the testing process should be related to the actual application, and the test method should be standardized, so as to carry forward the field of electrocatalysis. 展开更多
关键词 rare earth Alloy nanomaterials ELECTROCATALYSIS Preparation methods Hydrogen evolution reaction Oxygen reduction reaction Methanol oxidation reaction Ethanol oxidation reaction
下载PDF
Study of the Electronic Structure and Optical Properties of Rare Earth Luminescent Materials
15
作者 Chengxi Zhang 《Journal of Materials Science and Chemical Engineering》 2023年第10期8-18,共11页
Rare earth luminescent materials have attracted significant attention due to their wide-ranging applications in the field of optoelectronics. This study aims to delve into the electronic structure and optical properti... Rare earth luminescent materials have attracted significant attention due to their wide-ranging applications in the field of optoelectronics. This study aims to delve into the electronic structure and optical properties of rare earth luminescent materials, with the goal of uncovering their importance in luminescence mechanisms and applications. Through theoretical calculations and experimental methods, we conducted in-depth analyses on materials composed of various rare earth elements. Regarding electronic structure, we utilized computational techniques such as density functional theory to investigate the band structure, valence state distribution, and electronic density of states of rare earth luminescent materials. The results indicate that the electronic structural differences among different rare earth elements notably influence their luminescence performance, providing crucial clues for explaining the luminescence mechanism. In terms of optical properties, we systematically examined the material’s optical behaviors through fluorescence spectroscopy, absorption spectroscopy, and other experimental approaches. We found that rare earth luminescent materials exhibit distinct absorption and emission characteristics at different wavelengths, closely related to the transition processes of their electronic energy levels. Furthermore, we studied the influence of varying doping concentrations and impurities on the material’s optical properties. Experimental outcomes reveal that appropriate doping can effectively regulate the emission intensity and wavelength, offering greater possibilities for material applications. In summary, this study comprehensively analyzed the electronic structure and optical properties of rare earth luminescent materials, providing deep insights into understanding their luminescence mechanisms and potential value in optoelectronic applications. In the future, these research findings will serve as crucial references for the technological advancement in fields such as LEDs, lasers, and bioimaging. 展开更多
关键词 rare earth Luminescent Materials Electronic Structure Optical Properties Luminescence Mechanism Prospects for Applications
下载PDF
Correlation Evaluation of Ion Adsorption-Based Rare Earth Leaching Performance Based on Zeta Potential Drop Leaching
16
作者 Xunhe Li Zhengxiong Ding +3 位作者 Sengbiao Zeng Yanzhu Liu Dongping Li Yongxiu Li 《Journal of Materials Science and Chemical Engineering》 2023年第11期28-47,共20页
Rare earth elements are indispensable raw materials for advanced aero-engines, special optical materials, and high-performance electronic products. With the development of the social economy, the global demand for rar... Rare earth elements are indispensable raw materials for advanced aero-engines, special optical materials, and high-performance electronic products. With the development of the social economy, the global demand for rare earth resources is increasing, and rare earths have become a key metal for the development of new industries and frontier technologies that are highly valued both at home and abroad. Ion-adsorbed rare earth ores are an important source of rare earths, so the efficient green leaching of ion-adsorbed rare earths is important. Researchers found that the selection of an efficient green leaching agent for ion-adsorbed rare earths is based on the zeta potential of tailing clay minerals in addition to leaching efficiency, and both zeta potential and leaching ion concentration are related to mineral acidity and alkalinity, and the pH of tailing water suspension is a direct indicator of environmental water quality requirements. Therefore, the efficiency of the leaching process is closely integrated with the environmental evaluation, and the characteristics and correlation of the changes in zeta potential, pH, conductivity and pollutant concentration of the pulp of clay mineral content during the leaching process of ore leaching and tailings aqueous electrolyte solution leaching are studied by evaluating the leaching system, and a set of correlation leaching efficiency and environmental impact evaluation method is established based on the results of the above analysis, which is of scientific development of ion adsorption rare earth resources. It has important theoretical significance and practical application value. 展开更多
关键词 Ion Adsorption rare earth Ph Value Zeta Potential the Leaching Efficiency
下载PDF
CNREG realized the large-scale production of medium and heavy rare earth metal products for the first time
17
《China Rare Earth Information》 2023年第4期25-25,共1页
The successful production of the first batch of medium and heavy rare earth metal products of Ruixin Company,a subsidiary of CNREG,marks that CNREG has realized large-scale production of medium and heavy rare earth me... The successful production of the first batch of medium and heavy rare earth metal products of Ruixin Company,a subsidiary of CNREG,marks that CNREG has realized large-scale production of medium and heavy rare earth metal products for the first time.The new products not only expand CNREG’s categories of metal and alloy products,but also replenish the shortcomings of CNREG in the industrial chain at the production of rare earth metals,complete the product structure,broaden the value boundary of resources and open up new economic growth point for CNREG. 展开更多
关键词 earth rare SHORTCOMINGS
下载PDF
Chinese Scientists develop green,efficient rare earth minig techique
18
作者 Xinhua 《China Rare Earth Information》 2023年第3期28-28,共1页
Chinese scientists have developed a greener and more efficient mining technique to recover rareearth elements(REEs)from weathering crusts,revealing new paths for the sustainable harvest of natural resources.
关键词 rare earth EFFICIENT
下载PDF
Growth and corrosion behavior of rare earth film on hot-dip galvanized steel 被引量:26
19
作者 卢锦堂 吴海江 +2 位作者 孔纲 车淳山 许乔瑜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2006年第6期1397-1401,共5页
Hot-dip galvanized(HDG)steel sheets were treated for 30 s?24 h by the rare earth aqueous solution containing 20 g/L Ce(NO3)3·6H2O,and the growth behavior and corrosion resistance of the rare earth film were inves... Hot-dip galvanized(HDG)steel sheets were treated for 30 s?24 h by the rare earth aqueous solution containing 20 g/L Ce(NO3)3·6H2O,and the growth behavior and corrosion resistance of the rare earth film were investigated by SEM,EDS,AES and NSS.The results reveal that the rare earth film becomes thick while the mass gain of the samples does not distinctly change due to the zinc dissolution with the increase of treatment time.The film grows up more quickly and is apt to cracking in the vicinity of zinc grain boundaries,and eventually the film partly warps and flakes off with increasing film thickness.The NSS results show that the corrosion resistance of the film is dominated by both the film thickness and the cracks.With increasing treatment time,the corrosion resistance of the film increases within 1 h due to the increased film thickness and decreases after 1 h because the cracking and flaking off gradually become dominant factor. 展开更多
关键词 rare earth FILM hot DIP GALVANIZING corrosion resistance
下载PDF
Laser cladding in-situ carbide particle reinforced Fe-based composite coatings with rare earth oxide addition 被引量:21
20
作者 吴朝锋 马明星 +3 位作者 刘文今 钟敏霖 张红军 张伟明 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第6期997-1002,共6页
Particulate reinforced metal matrix composite(PR-MMC) has excellent properties such as good wear resistance,corrosion resistance and high temperature properties.Laser cladding is usually used to form PR-MMC on metal s... Particulate reinforced metal matrix composite(PR-MMC) has excellent properties such as good wear resistance,corrosion resistance and high temperature properties.Laser cladding is usually used to form PR-MMC on metal surface with various volume fractions of ceramic particles.Recent literatures showed that laser melting of powder mixture containing carbon and carbide-forming elements,was favorable for the formation of in-situ synthesized carbide particles.In this paper,rare earth oxide(RE2O3) was added into the clad powder mixture to investigate the effects of RE2O3 on the in-situ carbide particle formation in Fe-based composite coatings.Through the analysis using scanning electron microscope(SEM),energy-dispersive spectroscopy(EDS) and transmission electron microscope(TEM),it was revealed that:(1) Adding RE2O3 to the Fe-based powder mixture could effectively reduce cracks and porosities and the coating surface was more smooth;(2) The solubility of carbon could be improved which increased the eutectic degree of the microstructure;(3) RE2O3 could promote the nucleation of the reinforcement particles as heterogeneous nuclei.During the precipitating process of the carbide particles,some RE2O3 powders still existed while others react with carbon in the melt to form rare earth carbides.Both of them acted as heterogeneous nuclei for the formation of particles. 展开更多
关键词 laser cladding particle reinforced rare earth oxide NUCLEATION rare earth carbide
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部