期刊文献+
共找到6,304篇文章
< 1 2 250 >
每页显示 20 50 100
Energetic and Entropic Changes in Volume Work and Chemical Reactions
1
作者 Frank Diederichs 《Advances in Chemical Engineering and Science》 CAS 2024年第1期8-47,共40页
In the present study, energetic and entropic changes are investigated on a comparative basis, as they occur in the volume changes of an ideal gas in the Carnot cycle and in the course of the chemical reaction in a lea... In the present study, energetic and entropic changes are investigated on a comparative basis, as they occur in the volume changes of an ideal gas in the Carnot cycle and in the course of the chemical reaction in a lead-acid battery. Differences between reversible and irreversible processes have been worked out, in particular between reversibly exchanged entropy (∆<sub>e</sub>S) and irreversibly produced entropy (∆<sub>i</sub>S). In the partially irreversible case, ∆<sub>e</sub>S and ∆<sub>i</sub>S add up to the sum ∆S for the volume changes of a gas, and only this function has an exact differential. In a chemical reaction, however, ∆<sub>e</sub>S is independent on reversibility. It arises from the different intramolecular energy contents between products and reactants. Entropy production in a partially irreversible Carnot cycle is brought about through work-free expansions, whereas in the irreversible battery reaction entropy is produced via activated complexes, whereby a certain, variable fraction of the available chemical energy becomes transformed into electrical energy and the remaining fraction dissipated into heat. The irreversible reaction process via activated complexes has been explained phenomenologically. For a sufficiently high power output of coupled reactions, it is essential that the input energy is not completely reversibly transformed, but rather partially dissipated, because this can increase the process velocity and consequently its power output. A reduction of the counter potential is necessary for this purpose. This is not only important for man-made machines, but also for the viability of cells. 展开更多
关键词 Exchanged Entropy Entropy Production Coupled reactions Activated Complexes Power Output
下载PDF
Study on synergistic leaching of potassium and phosphorus from potassium feldspar and solid waste phosphogypsum via coupling reactions
2
作者 Chao Li Shizhao Wang +3 位作者 Yunshan Wang Xuebin An Gang Yang Yong Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期117-129,共13页
To achieve the resource utilization of solid waste phosphogypsum(PG)and tackle the problem of utilizing potassium feldspar(PF),a coupled synergistic process between PG and PF is proposed in this paper.The study invest... To achieve the resource utilization of solid waste phosphogypsum(PG)and tackle the problem of utilizing potassium feldspar(PF),a coupled synergistic process between PG and PF is proposed in this paper.The study investigates the features of P and F in PG,and explores the decomposition of PF using hydrofluoric acid(HF)in the sulfuric acid system for K leaching and leaching of P and F in PG.The impact factors such as sulfuric acid concentration,reaction temperature,reaction time,material ratio(PG/PF),liquid–solid ratio,PF particle size,and PF calcination temperature on the leaching of P and K is systematically investigated in this paper.The results show that under optimal conditions,the leaching rate of K and P reach more than 93%and 96%,respectively.Kinetics study using shrinking core model(SCM)indicates two significant stages with internal diffusion predominantly controlling the leaching of K.The apparent activation energies of these two stages are 11.92 kJ·mol^(-1)and 11.55 kJ·mol^(-1),respectively. 展开更多
关键词 PHOSPHOGYPSUM Potassium feldspar Coupling reaction LEACHING Waste treatment Kinetics
下载PDF
“Buckets effect”in the kinetics of electrocatalytic reactions
3
作者 Haowen Cui Yan-Xia Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期388-396,I0010,共10页
In this study,we systematically investigated the effect of proton concentration on the kinetics of the oxygen reduction reaction(ORR)on Pt(111)in acidic solutions.Experimental results demonstrate a rectangular hyperbo... In this study,we systematically investigated the effect of proton concentration on the kinetics of the oxygen reduction reaction(ORR)on Pt(111)in acidic solutions.Experimental results demonstrate a rectangular hyperbolic relationship,i.e.,the ORR current excluding the effect of other variables increases with proton concentration and then tends to a constant value.We consider that this is caused by the limitation of ORR kinetics by the trace oxygen concentration in the solution,which determines the upper limit of ORR kinetics.A model of effective concentration is further proposed for rectangular hyperbolic relationships:when the reactant concentration is high enough to reach a critical saturation concentration,the effective reactant concentration will become a constant value.This could be due to the limited concentration of a certain reactant for reactions involving more than one reactant or the limited number of active sites available on the catalyst.Our study provides new insights into the kinetics of electrocatalytic reactions,and it is important for the proper evaluation of catalyst activity and the study of structureperformance relationships. 展开更多
关键词 Oxygen reduction reaction KINETICS Zero order Rectangular hyperbolic relationship pH effect
下载PDF
Experimental study on reactions between alkaline basaltic melt and orthopyroxenes: constraints on the evolution of lithospheric mantle in the North China Craton
4
作者 Hanqi He Mingliang Wang Hongfeng Tang 《Acta Geochimica》 EI CAS CSCD 2024年第2期354-365,共12页
The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus ar... The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper.The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle.The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin,Liaoning Province,and the orthopyroxenes were separated from the mantle xenoliths in Damaping,Hebei Province.The results show that clinopyroxenes were formed in all the reactions between the alkaline basaltic melt and orthopyroxenes under the studied P–T conditions.The formation of clinopyroxene in the reaction zone is mainly controlled by dissolution–crystallization,and the chemical compositions of the reacted melt are primarily infl uenced by the diff usion eff ect.Temperature is the most important parameter controlling the reactions between the melt and orthopyroxenes,which has a direct impact on the melting of orthopyroxenes and the diff usion of chemical components in the melt.Temperature also directly controls the chemical compositions of the newly formed clinopyroxenes in the reaction zone and the reacted melt.The formation of clinopyroxenes from the reactions between the alkaline basaltic melt and orthopyroxenes can result in an increase of CaO and Al_(2)O_(3) contents in the rocks containing this mineral.Therefore,the reactions between the alkaline basaltic melt from the asthenospheric mantle and orthopyroxenes from the lithospheric mantle can lead to the evolution of lithospheric mantle in the North China Craton from refractory to fertile with relatively high CaO and Al 2 O 3 contents.In addition,the reacted melts in some runs were transformed from the starting alkaline basaltic into tholeiitic after reactions,indicating that tholeiitic magma could be generated from alkaline basaltic one via reactions between the latter and orthopyroxene. 展开更多
关键词 Alkaline basaltic melt ORTHOPYROXENE Melt–mineral reaction High-temperature and high-pressure experiment Genesis of basalt Evolution of lithospheric mantle in the North China Craton
下载PDF
Why Don’t We Adequately Identify and Manage Adverse Drug Reactions despite Having the Needed Information?
5
作者 Mark J. Kupersmith Karl Kieburtz 《Health》 2024年第2期148-159,共12页
Importance/Objective: Adverse Drug Reactions (ADRs) are unavoidable, but recognizing and addressing ADRs early can improve wellness and prevent permanent injury. We suggest that available medical information and digit... Importance/Objective: Adverse Drug Reactions (ADRs) are unavoidable, but recognizing and addressing ADRs early can improve wellness and prevent permanent injury. We suggest that available medical information and digital/electronic methods could be used to manage this major healthcare problem for individual patients in real time. Methods: We searched the available digital applications and three literature databases using the medical subject heading terms, adverse drug reaction reporting systems or management, filtered by clinical trial or systemic reviews, to detect publications with data about ADR identification and management approaches. We reviewed the reports that had abstract or summary data or proposed or implemented methods or systems with potential to identify or manage ADRs in clinical settings. Results: The vast majority of the 481 reports used retrospectively collected data for groups of patients or were limited to surveying one population group or class of medication. The reports showed potential and definite associations of ADRs for specific drugs and problems, mostly, but not exclusively, for patients in hospitals and nursing homes. No reports described complete methods to collect comprehensive data on ADRs for individual patients in a healthcare system. The digital applications have ADR information, but all are too cumbersome or incomplete for use in active clinical settings. Several studies suggested that providing information about potential ADRs to clinicians can reduce these problems. Conclusion and Relevance: Although investigators and government agencies agree with the need, there is no comprehensive ADR management program in current use. Informing the patient’s healthcare practitioners of potential ADRs at the point of service has the potential for reduction of these complications, which should improve healthcare and reduce unneeded costs. 展开更多
关键词 Adverse Drug Reaction Medication Side Effect Identification Medication Complication Medication Safety
下载PDF
Deciphering engineering principle of three-phase interface for advanced gas-involved electrochemical reactions
6
作者 Yanzheng He Sisi Liu +3 位作者 Mengfan Wang Qiyang Cheng Tao Qian Chenglin Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期302-323,I0008,共23页
As an alternative to conventional energy conversion and storage reactions,gas-involved electrochemical reactions,including the carbon dioxide reduction reaction(CO_(2)RR),nitrogen reduction reaction(NRR)and hydrogen e... As an alternative to conventional energy conversion and storage reactions,gas-involved electrochemical reactions,including the carbon dioxide reduction reaction(CO_(2)RR),nitrogen reduction reaction(NRR)and hydrogen evolution reaction(HER),have become an emerging research direction and have gained increasing attention due to their advantages of environmental friendliness and sustainability.Various studies have been designed to accelerate sluggish kinetics but with limited results.Most of them promote the reaction by modulating the intrinsic properties of the catalyst,ignoring the synergistic effect of the reaction as a whole.Due to the introduction of gas,traditional liquid-solid two-phase reactions are no longer applicable to future research.Since gas-involved electrochemical reactions mostly occur at the junctions of gaseous reactants,liquid electrolytes and solid catalysts,the focus of future research on reaction kinetics should gradually shift to three-phase reaction interfaces.In this review,we briefly introduce the formation and constraints of the three-phase interface and propose three criteria to judge its merit,namely,the active site,mass diffusion and electron mass transfer.Subsequently,a series of modulation methods and relevant works are discussed in detail from the three improvement directions of‘exposing more active sites,promoting mass diffusion and accelerating electron transfer’.Definitively,we provide farsighted insights into the understanding and research of three-phase interfaces in the future and point out the possible development direction of future regulatory methods,hoping that this review can broaden the future applications of the three-phase interface,including but not limited to gas-involved electrochemical reactions. 展开更多
关键词 Three-phase reaction Surface reactions Mass diffusion Electron transfer Gas-involved electrochemical reactions
下载PDF
Theoretical uncertainties of(d,^(3)He)and(^(3)He,d)reactions owing to the uncertainties of optical model potentials 被引量:2
7
作者 Wei-Jia Kong Dan-Yang Pang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第6期147-153,共7页
The theoretical uncertainties of single proton transfer cross sections of the(^(3)He,d)and(d,^(3)He)reactions,owing to the uncertainties of the entrance-and exit-channel optical model potentials,are examined with the^... The theoretical uncertainties of single proton transfer cross sections of the(^(3)He,d)and(d,^(3)He)reactions,owing to the uncertainties of the entrance-and exit-channel optical model potentials,are examined with the^(30)Si(^(3)He,d)^(31)P,^(13)B(d,^(3)He)^(12)Be,and^(34)S(^(3)He,d)^(35)Cl reactions at incident energies of 25,46,and 25 MeV,respectively,within the framework of the distorted wave Born approximation.The differential cross sections at the first peaks in the angular distributions of these reactions are found to have uncertainties of approximately 5%,owing to the uncertainties in the optical model potentials from 20,000 calculations of randomly sampled parameters.This amount of uncertainty is found to be nearly independent of the angular momentum transfer and the target masses within the studied range of incident energies.Uncertainties in the single proton spectroscopic factors obtained by matching the theoretical and experimental cross sections at different scattering angles are also discussed. 展开更多
关键词 Proton transfer reactions Optical model potentials Spectroscopic factors
下载PDF
Cryoactivated proton-involved redox reactions enable stable-cycling fiber cooper metal batteries operating at-50℃
8
作者 Changyuan Yan Zixuan Chen +2 位作者 Hongzhong Deng Hao Huang Xianyu Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期758-767,I0016,共11页
Fiber-shaped batteries that feature outstanding flexibility,light weight,and wovenability are extremely attractive for powering smart wearable electronic textiles,which further stimulates their demand in extreme envir... Fiber-shaped batteries that feature outstanding flexibility,light weight,and wovenability are extremely attractive for powering smart wearable electronic textiles,which further stimulates their demand in extreme environments.However,there are rare reports on ultralow-temperature fiber batteries to date.This is mainly attributed to the poor conductivity of electrodes and freezing of electrolytes that restrain their satisfactory flexible operation in cold environments.Herein,we propose a fiber cooper metal battery consisting of a conductive polyaniline cathode,an anti-freezing Cu(BF4)2+H3PO4electrolyte and an acidresistant copper wire anode,which can withstand various deformations at ultralow temperatures.Impressively,enhanced capacity and cyclic stability can be achieved by cryoactivated abundant reactive sites in the polyaniline,while benefiting from redox reactions with rapid kinetics involving protons rather than copper ions.Consequently,this well-designed polyaniline/Cu fiber battery delivers excellent flexibility without obvious capacity decay after being bent at-30℃,as well as a remarkable discharge capacity of 120.1 mA h g-1and a capacity retention of 96.8%after 2000 cycles at-50℃.The fiber batteries integrated into wearable textiles can power various electronic devices.These performances greatly outperform those of most reported works.Overall,this work provides a promising strategy toward applications of cryogenic wearable energy storage devices. 展开更多
关键词 Cryoactivated sites Proton-involved redox reactions Fiber cooper metal battery Polyaniline Cyclic stability Low temperature
下载PDF
Differences in CO_(2)-Water-Rock Chemical Reactions among ’Sweet Spot’ Reservoirs:Implications for Carbon Sequestration
9
作者 YANG Leilei SONG Ziyang +5 位作者 LIU Yi WEI Guo ZHANG Xing MO Chenchen FENG Bo LI Yaohua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第3期972-985,共14页
The Lucaogou Formation,located in the Jimsar Sag,Junggar Basin,NW China,has great potential for shale oil resources.In the process of CO_(2)-EOR(CO_(2) enhance oil recovery),mineral dissolution,precipitation and trans... The Lucaogou Formation,located in the Jimsar Sag,Junggar Basin,NW China,has great potential for shale oil resources.In the process of CO_(2)-EOR(CO_(2) enhance oil recovery),mineral dissolution,precipitation and transformation,leading to the local corrosion or blockage of reservoirs,have a significant influence on recovery.In this study,a combination of high-temperature and high-pressure laboratory experiments and coupled temperature/fluid-chemistry multifield numerical simulations are used to investigate CO_(2)-water-rock reactions under various reservoir conditions in the upper and lower ’sweet spots’,to reveal the mechanisms underlying CO_(2)-induced mineral dissolution,precipitation and transformation.In addition,we quantitatively calculated the evolution of porosity over geological timescales;compared and analyzed the variability of CO_(2) transformation in the reservoir under a variety of temperature,lithology and solution conditions;and identified the main factors controlling CO_(2)-water-rock reactions,the types of mineral transformation occurring during long-term CO_(2) sequestration and effective carbon sequestration minerals.The results demonstrate that the main minerals undergoing dissolution under the influence of supercritical CO_(2) are feldspars,while the main minerals undergoing precipitation include carbonate rock minerals,clay minerals and quartz.Feldspar minerals,especially the initially abundant plagioclase in the formation,directly affects total carbon sequestration,feldspar-rich clastic rocks therefore having considerable sequestration potential. 展开更多
关键词 CO_(2) water-rock reactions mineral transformation carbon sequestration
下载PDF
Prediction of synthesis cross sections of new moscovium isotopes in fusion‑evaporation reactions
10
作者 Peng‑Hui Chen Hao Wu +2 位作者 Zu‑Xing Yang Xiang‑Hua Zeng Zhao‑Qing Feng 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第1期86-101,共16页
In the framework of the dinuclear system model,the synthesis mechanism of the superheavy nuclides with atomic numbers Z=112,114,115 in the reactions of projectiles 40,^(48)Ca bombarding on targets^(238)U,^(242)Pu,and^... In the framework of the dinuclear system model,the synthesis mechanism of the superheavy nuclides with atomic numbers Z=112,114,115 in the reactions of projectiles 40,^(48)Ca bombarding on targets^(238)U,^(242)Pu,and^(243)Am within a wide interval of incident energy has been investigated systematically.Based on the available experimental excitation functions,the dependence of calculated synthesis cross-sections on collision orientations has been studied thoroughly.The total kinetic energy(TKE)of these collisions with fixed collision orientation shows orientation dependence,which can be used to predict the tendency of kinetic energy diffusion.The TKE is dependent on incident energies,as discussed in this paper.We applied the method based on the Coulomb barrier distribution function in our calculations.This allowed us to approximately consider all the collision orientations from tip-tip to side-side.The calculations of excitation functions of^(48)Ca+^(238)U,^(48)Ca+242Pu,and^(48)Ca+^(243)Am are in good agreement with the available experimental data.The isospin effect of projectiles on production cross-sections of moscovium isotopes and the influence of the entrance channel effect on the synthesis cross-sections of superheavy nuclei are also discussed in this paper.The synthesis cross-section of new moscovium isotopes 278−286 Mc was predicted to be as large as hundreds of pb in the fusion-evaporation reactions of^(35,37)Cl+^(248)Cf,^(38,40)Ar+^(247)Bk,^(39,41)K+247 Cm,^(40,42,44,46)Ca+^(243)Am,45 Sc+^(244)Pu,and^(46,48,50)Ti+237Np,51 V+^(238)U at some typical excitation energies. 展开更多
关键词 Dinuclear system model Superheavy nuclei Complete fusion reactions Production cross-section
下载PDF
Production of neutron-rich actinide isotopes in isobaric collisions via multinucleon transfer reactions
11
作者 Peng-Hui Chen Chang Geng +2 位作者 Zu-Xing Yang Xiang-Hua Zeng Zhao-Qing Feng 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第10期166-177,共12页
We systematically calculated the multinucleon transfer reactions of ^(208)Os,^(208)Pt,^(208)Hg,^(208)Pb,^(208)Po,^(208)Rn,^(208)Ra,and ^(132,136) Xe when bombarded on ^(232) Th and ^(248) Cm at Coulomb barrier energie... We systematically calculated the multinucleon transfer reactions of ^(208)Os,^(208)Pt,^(208)Hg,^(208)Pb,^(208)Po,^(208)Rn,^(208)Ra,and ^(132,136) Xe when bombarded on ^(232) Th and ^(248) Cm at Coulomb barrier energies within the dinuclear system model.These results are in good agreement with the available experimental data.The influence of Coulomb and shell effects on actinide production in these reactions has been rigorously studied.We calculated and analyzed the potential energy surface (PES) and total kinetic energy (TKE) mass distributions for the reactions involving ^(208)Hg,^(208)Pb,and ^(208) Po with ^(248) Cm and ^(232)Th.The PES and TKE spectra shed light on the fragment formation mechanisms in multinucleon transfer reactions,with clear indications of isospin and shell effects.The production cross sections for multinucleon transfer products show a strong dependence on isobar projectiles with a mass number A=208.Isobar projectiles with high N/Z ratios are advantageous for generating neutron-rich target-like fragments.Conversely,products induced by isobar projectiles with larger charge numbers tend to shift toward proton-rich regions.The intertwining of the Coulomb potential and shell effect is evident in the production cross sections of actinide isotopes.Drawing from reactions induced by radioactive projectiles,we anticipate the discovery of several new actinide isotopes near the nuclear drip lines,extending our reach into the superheavy nuclei domain. 展开更多
关键词 Dinuclear system model Isobaric collisions Multinucleon transfer reactions Neutron-rich actinides
下载PDF
Degradation of differently processed Mg-based implants leads to distinct foreign body reactions(FBRs)through dissimilar signaling pathways
12
作者 Xiaosong Liu Guoqiang Chen +15 位作者 Xiongxiong Zhong Tianfang Wang Xiaohong He Weipeng Yuan Pingping Zhang Ying Liu Dongming Cao Shu Chen Ken-ichi Manabe Zhengyi Jiang Tsuyoshi Furushima Damon Kent Yang Chen Guoying Ni Mingyong Gao Hejie Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期2106-2124,共19页
Mg alloys have mechanical properties compatible with human bones.However,their rapid degradation and associated foreign body reactions in vivo significantly limit their application for human implants.In this study,thr... Mg alloys have mechanical properties compatible with human bones.However,their rapid degradation and associated foreign body reactions in vivo significantly limit their application for human implants.In this study,three differently processed Mg alloys,pure Mg(PM),cold extruded Mg alloy AZ31(CE AZ31),and fully annealed AZ31 Mg alloy(FA AZ31)were comparatively investigated for their potential as implants using a rat model.All three implanted Mg alloys do not show any impact on hepato-and renal function,nor any signs of observable changes to vital organs.Proteomics analysis of tissues directly contacting the implants 2.5 months post implantation revealed that FA AZ31 activates very few inflammation and immune associated signaling pathways;while the CE AZ31 and PM produce more significant inflammatory responses as confirmed by cytokine array analyses.Further,FA AZ31 activated pathways for cell organization and development that may improve the recovery of injured tissues.Structurally,EBSD analysis reveals that the FA AZ31 alloy has a higher ratio of first-order pyramidal orientated(10–11){10–1–2}grain texture with a value of 0.25,while PM and CE AZ31 alloys have lower ratios of first-order pyramidal orientated texture with the values of 0.16 and 0.17,respectively.This is associated with recovery and recrystallisation during annealing which promotes grain texture which exhibits enhanced degradation behaviours and induces a more limited immune response in vivo.In conclusion,the FA AZ31 demonstrated better biocompatibility and corrosion resistance and is a promising candidate for metal-based degradable implants which warrants further investigation. 展开更多
关键词 Toxicity test Proteomics analysis Signaling pathway Biocompatibility and corrosion resistance First-order pyramidal slip system Recovery and recrystallization Foreign body reactions(FBRs)
下载PDF
Geophysical Reactions to Remote 2022 Tonga Eruption and to Türkiye Earthquakes in Georgia (Caucasus): Hydrogeology, Geomagnetics and Seismicity
13
作者 Tamaz Chelidze George Melikadze +2 位作者 Genady Kobzev Tamar Jimsheladze Nadezhda Dovgal 《Open Journal of Earthquake Research》 2023年第4期223-237,共15页
The paper is devoted to analysis of hydrogeological, geomagnetic and seismic response to the two great remote geophysical events, 2022 Tonga volcano eruption and 2020-2023 Türkiye earthquakes in Georgia (Caucasus... The paper is devoted to analysis of hydrogeological, geomagnetic and seismic response to the two great remote geophysical events, 2022 Tonga volcano eruption and 2020-2023 Türkiye earthquakes in Georgia (Caucasus). The geophysical observation system in Georgia, namely, water level stations in the network of deep wells, atmospheric pressure and the geomagnetic sensors of the Dusheti Geophysical Observatory (DGO) as well as seismic data in Garni Observatory (Armenia) respond to the Tonga event by anomalies in the time series. These data show that there are two types of respond: infrasound disturbances in atmospheric pressure and seismic waves in the Earth generated by the eruption. After Tonga eruption January 15 at 04:21 UTC three groups of N-shaped waveforms were registered in the water level corresponding to the global propagation characteristics of the N-shaped waveform of infrasound signals on the barograms generated by eruption at the distance ~15,700 km: they were identified as the Lamb wave, a surface wave package running in the atmosphere with a velocity around ~314 m/s. The paper also presents the WL reactions to three strong EQs that occur in Türkiye 2020-2023, namely Elazığ, Van and Türkiye-Syria EQs. WL in Georgian well network reacts to these events by anomalies of different intensity, which points to the high sensitivity of hydrosphere to remote (several hundred km) strong EQs. The intensity and character of WL reactions depend strongly on the local hydrogeological properties of rocks, surrounding the well. 展开更多
关键词 2022 Tonga Eruption Türkiye Earthquakes Hydrogeological Geomagnetic and Seismic reactions in Georgia
下载PDF
Facet Engineering of Advanced Electrocatalysts Toward Hydrogen/Oxygen Evolution Reactions 被引量:2
14
作者 Changshui Wang Qian Zhang +7 位作者 Bing Yan Bo You Jiaojiao Zheng Li Feng Chunmei Zhang Shaohua Jiang Wei Chen Shuijian He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期97-137,共41页
The electrocatalytic water splitting technology can generate highpurity hydrogen without emitting carbon dioxide,which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality... The electrocatalytic water splitting technology can generate highpurity hydrogen without emitting carbon dioxide,which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality.Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency.Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface.Owing to the anisotropy,crystal planes with different orientations usually feature facet-dependent physical and chemical properties,leading to differences in the adsorption energies of oxygen or hydrogen intermediates,and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).In this review,a brief introduction of the basic concepts,fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided.The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes.Subsequently,three strategies of selective capping agent,selective etching agent,and coordination modulation to tune crystal planes are comprehensively summarized.Then,we present an overview of significant contributions of facet-engineered catalysts toward HER,OER,and overall water splitting.In particular,we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity.Finally,the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed. 展开更多
关键词 Crystal facet engineering ANISOTROPY Oxygen evolution reaction Hydrogen evolution reaction Theoretical simulations
下载PDF
A Review of In‑Situ Techniques for Probing Active Sites and Mechanisms of Electrocatalytic Oxygen Reduction Reactions 被引量:2
15
作者 Jinyu Zhao Jie Lian +2 位作者 Zhenxin Zhao Xiaomin Wang Jiujun Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期61-113,共53页
Electrocatalytic oxygen reduction reaction(ORR)is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries,etc.However,the essential catalysts to overco... Electrocatalytic oxygen reduction reaction(ORR)is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries,etc.However,the essential catalysts to overcome its slow reaction kinetic always undergo a complex dynamic evolution in the actual catalytic process,and the concomitant intermediates and catalytic products also occur continuous conversion and reconstruction.This makes them difficult to be accurately captured,making the identification of ORR active sites and the elucidation of ORR mechanisms difficult.Thus,it is necessary to use extensive in-situ characterization techniques to proceed the real-time monitoring of the catalyst structure and the evolution state of intermediates and products during ORR.This work reviews the major advances in the use of various in-situ techniques to characterize the catalytic processes of various catalysts.Specifically,the catalyst structure evolutions revealed directly by in-situ techniques are systematically summarized,such as phase,valence,electronic transfer,coordination,and spin states varies.In-situ revelation of intermediate adsorption/desorption behavior,and the real-time monitoring of the product nucleation,growth,and reconstruction evolution are equally emphasized in the discussion.Other interference factors,as well as in-situ signal assignment with the aid of theoretical calculations,are also covered.Finally,some major challenges and prospects of in-situ techniques for future catalysts research in the ORR process are proposed. 展开更多
关键词 Oxygen reduction reaction Catalysts In-situ techniques Active sites MECHANISMS
下载PDF
Metal-organic framework-based materials as key components in electrocatalytic oxidation and reduction reactions
16
作者 Soheila Sanati Ali Morsali Hermenegildo García 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期540-567,I0014,共29页
Studies have extensively addressed the development of electrocatalytic technologies for energy storage and conversion,fuel production,and environmental protection.Electrode processes such as different oxidation and re... Studies have extensively addressed the development of electrocatalytic technologies for energy storage and conversion,fuel production,and environmental protection.Electrode processes such as different oxidation and reduction reactions play a vital and significant role in these technologies.In this regard,efficient,inexpensive,and stable electrocatalysts capable can significantly promote electrochemical reactions.Unique features of metal–organic frameworks(MOFs)such as their high porosity,tunable structure,size,and pore shape,high surface area,and redox properties have introduced them as an ideal electrocatalyst candidate.This review is thus aimed at elucidating the role of MOF-based materials(pristine,derivatives and composites)as efficient electrocatalysts in energy and sensing-related oxidation and reduction reactions such as oxygen reduction reaction(ORR),hydrogen oxidation reaction(HOR),carbon dioxide reduction reaction(CO_(2)RR),urea oxidation reaction(UOR),alcohol oxidation reaction(AOR),nitrogen reduction reaction(NRR),and glucose oxidation reaction(GOR)in advanced energy and sensing devices.Also,the structure–property relationship of the electrocatalyst was elaborated for each electrocatalytic reaction.Finally,perspectives on the potential research topics for practical use of MOF-based electrocatalysts are addressed.The present review can improve the interest in MOF-based electrocatalysts to study different oxidation and reduction reactions in energy and sensing systems. 展开更多
关键词 Metal-organic frameworks ELECTROCATALYST Oxidation reaction Reduction reaction
下载PDF
Elucidating the Role of Mass Transfer in Electrochemical Redox Reactions on Electrospun Fibers
17
作者 Yan Li Ziwang Kan +6 位作者 Lina Jia Dan Zhang Yan Hong Jingjing Liu Haibo Huang Siqi Li Song Liu 《Transactions of Tianjin University》 EI CAS 2023年第5期313-320,共8页
Mass transfer can tune the surface concentration of reactants and products and subsequently infl uence the catalytic perfor-mance.The morphology of nanomaterials plays an important role in the mass transfer of reactio... Mass transfer can tune the surface concentration of reactants and products and subsequently infl uence the catalytic perfor-mance.The morphology of nanomaterials plays an important role in the mass transfer of reaction microdomains,but related studies are lacking.Herein,a facile electrospinning technique utilizing cellulose was employed to fabricate a series of carbon nanofi bers with diff erent diameters,which exhibited excellent electrochemical nitrate reduction reaction and oxygen evolu-tion reaction activities.Furthermore,the microstructure of electrocatalysts could infl uence the gas-liquid-solid interfacial mass transfer,resulting in diff erent electrochemical performances. 展开更多
关键词 Mass transfer ELECTROSPINNING Electrochemical nitrate reduction reaction Oxygen evolution reaction
下载PDF
Metal organic polymers with dual catalytic sites for oxygen reduction and oxygen evolution reactions
18
作者 Sijia Liu Minghao Liu +4 位作者 Xuewen Li Shuai Yang Qiyang Miao Qing Xu Gaofeng Zeng 《Carbon Energy》 SCIE CSCD 2023年第5期127-137,共11页
Metal-organic frameworks and covalent organic frameworks have been widely employed in electrochemical catalysis owing to their designable skeletons,controllable porosities,and well-defined catalytic centers.However,th... Metal-organic frameworks and covalent organic frameworks have been widely employed in electrochemical catalysis owing to their designable skeletons,controllable porosities,and well-defined catalytic centers.However,the poor chemical stability and low electron conductivity limited their activity,and single-functional sites in these frameworks hindered them to show multifunctional roles in catalytic systems.Herein,we have constructed novel metal organic polymers(Co-HAT-CN and Ni-HAT-CN)with dual catalytic centers(metal-N_(4) and metal-N_(2))to catalyze oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).By using different metal centers,the catalytic activity and selectivity were well-tuned.Among them,Co-HAT-CN catalyzed the ORR in a 4e^(-)pathway,with a half-wave potential of 0.8 V versus RHE,while the Ni-HAT-CN catalyze ORR in a 2e^(-)pathway with H_(2)O_(2) selectivity over 90%.Moreover,the Co-HAT-CN delivered an overpotential of 350 mV at 10 mA cm^(-2) with a corresponding Tafel slope of 24 mV dec^(-1) for OER in a 1.0 M KOH aqueous solution.The experimental results revealed that the activities toward ORR were due to the M-N_(4) sites in the frameworks,and both M-N_(4) and M-N_(2) sites contributed to the OER.This work gives us a new platform to construct bifunctional catalysts. 展开更多
关键词 covalent organic frameworks metal organic polymers oxygen evolution reaction oxygen reduction reaction single atom catalysts
下载PDF
Reactions of Chromium during the Calcination of Cement Clinker Produced Using Steel Slag
19
作者 何晨海 YAN Bo LI Fuzhou 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期834-841,共8页
We investigated the effects of calcination temperature(950-1450℃),steel slag content,and the total chromium content of steel slag on the Cr^(6+)contents of clinker samples produced using steel slags with different ch... We investigated the effects of calcination temperature(950-1450℃),steel slag content,and the total chromium content of steel slag on the Cr^(6+)contents of clinker samples produced using steel slags with different chromium contents.Additionally,the reactions of chromium in clinker(produced using steel slag)during calcination were studied.It is found that Cr^(6+)conversion increases with increasing calcination temperature to 1250℃,reaching a maximum of 43%-79%,before decreasing to 18%-42%at 1450℃.Cr^(6+)is mainly formed by the oxidation of trivalent chromium(Cr^(3+))during the solid-phase reaction stage of clinker calcination.Furthermore,the Cr^(6+)content of a clinker sample is proportional to the chromium content of its raw meal precursor and is mainly in the form of water-insoluble calcium chromate(CaCrO_(4)).The chromium in clinker is mainly distributed in tricalcium aluminate and tetracalcium aluminoferrite,however,some is present in silicate minerals.We expect to inform the monitoring and control of the Cr^(6+)content of clinker(produced using steel slag)and resulting cement. 展开更多
关键词 CHROMIUM cement clinker steel slag hexavalent chromium reaction characteristics
原文传递
Recent advances in paired electrolysis coupling CO_(2) reduction with alternative oxidation reactions
20
作者 Deng Li Jiangfan Yang +2 位作者 Juhong Lian Junqing Yan Shengzhong(Frank) Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期406-419,I0011,共15页
Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)holds great promise in green energy conversion and storage.However,for current CO_(2) electrolyzers that rely on the oxygen evolution reaction,a large portion of the... Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)holds great promise in green energy conversion and storage.However,for current CO_(2) electrolyzers that rely on the oxygen evolution reaction,a large portion of the input energy is"wasted"at the anode due to the high overpotential requirement and the recovery of low-value oxygen.To make efficient use of the electricity during electrolysis,coupling CO_(2)RR with anodic alternatives that have low energy demands and/or profitable returns with high-value products is then promising.Herein,we review the latest advances in paired systems for simultaneous CO_(2) reduction and anode valorization.We start with the cases integrating CO_(2)RR with concurrent alternative oxidation,such as inorganic oxidation using chloride,sulfide,ammonia and urea,and organic oxidation using alcohols,aldehydes and primary amines.The paired systems that couple CO_(2)RR with on-site oxidative upgrading of CO_(2)-reduced chemicals are also introduced.The coupling mechanism,electrochemical performance and economic viability of these co-electrolysis systems are discussed.Thereby,we then point out the mismatch issues between the cathodic and anodic reactions regrading catalyst ability,electrolyte solution and reactant supply that will challenge the applications of these paired electrolysis systems.Opportunities to address these issues are further proposed,providing some guidance for future research. 展开更多
关键词 ELECTROLYSIS Coupling Reaction CO_(2)Utilization Co-Valorization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部