The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-r...The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-ronment is a challenging task.Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy.To this end,the present study proposes an Efficient YOLACT(E-YOLACT)algorithm for strawberry detection and segmentation based on the YOLACT framework.The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism,pyramid squeeze shuffle attention(PSSA),for efficient feature extraction.Additionally,an attention-guided context-feature pyramid network(AC-FPN)is employed instead of FPN to optimize the architecture’s performance.Furthermore,a feature-enhanced model(FEM)is introduced to enhance the prediction head’s capabilities,while efficient fast non-maximum suppression(EF-NMS)is devised to improve non-maximum suppression.The experimental results demonstrate that the E-YOLACT achieves a Box-mAP and Mask-mAP of 77.9 and 76.6,respectively,on the custom dataset.Moreover,it exhibits an impressive category accuracy of 93.5%.Notably,the E-YOLACT also demonstrates a remarkable real-time detection capability with a speed of 34.8 FPS.The method proposed in this article presents an efficient approach for the vision system of a strawberry-picking robot.展开更多
The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional appro...The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional approaches primarily focus on broad applications such as wayfinding,obstacle detection,and fall prevention.However,there is a notable discrepancy in applying these technologies to more specific scenarios,like identifying distinct food crop types or recognizing faces.This study proposes a real-time application designed for visually impaired individuals,aiming to bridge this research-application gap.It introduces a system capable of detecting 20 different food crop types and recognizing faces with impressive accuracies of 83.27%and 95.64%,respectively.These results represent a significant contribution to the field of assistive technologies,providing visually impaired users with detailed and relevant information about their surroundings,thereby enhancing their mobility and ensuring their safety.Additionally,it addresses the vital aspects of social engagements,acknowledging the challenges faced by visually impaired individuals in recognizing acquaintances without auditory or tactile signals,and highlights recent developments in prototype systems aimed at assisting with face recognition tasks.This comprehensive approach not only promises enhanced navigational aids but also aims to enrich the social well-being and safety of visually impaired communities.展开更多
Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance o...Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance.展开更多
Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The m...Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The method adopts the overall design of backbone network, detection network and algorithmic parameter optimisation method, completes the model training on the self-constructed occlusion target dataset, and adopts the multi-scale perception method for target detection. The HNM algorithm is used to screen positive and negative samples during the training process, and the NMS algorithm is used to post-process the prediction results during the detection process to improve the detection efficiency. After experimental validation, the obtained model has the multi-class average predicted value (mAP) of the dataset. It has general advantages over traditional target detection methods. The detection time of a single target on FDDB dataset is 39 ms, which can meet the need of real-time target detection. In addition, the project team has successfully deployed the method into substations and put it into use in many places in Beijing, which is important for achieving the anomaly of occlusion target detection.展开更多
Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical a...Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.展开更多
Network intrusion poses a severe threat to the Internet.However,existing intrusion detection models cannot effectively distinguish different intrusions with high-degree feature overlap.In addition,efficient real-time ...Network intrusion poses a severe threat to the Internet.However,existing intrusion detection models cannot effectively distinguish different intrusions with high-degree feature overlap.In addition,efficient real-time detection is an urgent problem.To address the two above problems,we propose a Latent Dirichlet Allocation topic model-based framework for real-time network Intrusion Detection(LDA-ID),consisting of static and online LDA-ID.The problem of feature overlap is transformed into static LDA-ID topic number optimization and topic selection.Thus,the detection is based on the latent topic features.To achieve efficient real-time detection,we design an online computing mode for static LDA-ID,in which a parameter iteration method based on momentum is proposed to balance the contribution of prior knowledge and new information.Furthermore,we design two matching mechanisms to accommodate the static and online LDA-ID,respectively.Experimental results on the public NSL-KDD and UNSW-NB15 datasets show that our framework gets higher accuracy than the others.展开更多
Being cheap,nondestructive,and easy to use,gas sensors play important roles in the food industry.However,most gas sensors are suitable more for laboratory-quality fast testing rather than for cold-chain continuous and...Being cheap,nondestructive,and easy to use,gas sensors play important roles in the food industry.However,most gas sensors are suitable more for laboratory-quality fast testing rather than for cold-chain continuous and cumulative testing.Also,an ideal electronic nose(E-nose)in a cold chain should be stable to its surroundings and remain highly accurate and portable.In this work,a portable film bulk acoustic resonator(FBAR)-based E-nose was built for real-time measurement of banana shelf time.The sensor chamber to contain the portable circuit of the E-nose is as small as a smartphone,and by introducing an air-tight FBAR as a reference,the E-nose can avoid most of the drift caused by surroundings.With the help of porous layer by layer(LBL)coating of the FBAR,the sensitivity of the E-nose is 5 ppm to ethylene and 0.5 ppm to isoamyl acetate and isoamyl butyrate,while the detection range is large enough to cover a relative humidity of 0.8.In this regard,the E-nose can easily discriminate between yellow bananas with green necks and entirely yellow bananas while allowing the bananas to maintain their biological activities in their normal storage state,thereby showing the possibility of real-time shelf time detection.This portable FBAR-based E-nose has a large testing scale,high sensitivity,good humidity tolerance,and low frequency drift to its surroundings,thereby meeting the needs of cold-chain usage.展开更多
The continuous operation of On-Load Tap-Changers (OLTC) is essential for maintaining stable voltage levels in power transmission and distribution systems. Timely fault detection in OLTC is essential for preventing maj...The continuous operation of On-Load Tap-Changers (OLTC) is essential for maintaining stable voltage levels in power transmission and distribution systems. Timely fault detection in OLTC is essential for preventing major failures and ensuring the reliability of the electrical grid. This research paper proposes an innovative approach that combines voiceprint detection using MATLAB analysis for online fault monitoring of OLTC. By leveraging advanced signal processing techniques and machine learning algorithms in MATLAB, the proposed method accurately detects faults in OLTC, providing real-time monitoring and proactive maintenance strategies.展开更多
To detect the improper sitting posture of a person sitting on a chair,a posture detection system using machine learning classification has been proposed in this work.The addressed problem correlates to the third Susta...To detect the improper sitting posture of a person sitting on a chair,a posture detection system using machine learning classification has been proposed in this work.The addressed problem correlates to the third Sustainable Development Goal(SDG),ensuring healthy lives and promoting well-being for all ages,as specified by the World Health Organization(WHO).An improper sitting position can be fatal if one sits for a long time in the wrong position,and it can be dangerous for ulcers and lower spine discomfort.This novel study includes a practical implementation of a cushion consisting of a grid of 3×3 force-sensitive resistors(FSR)embedded to read the pressure of the person sitting on it.Additionally,the Body Mass Index(BMI)has been included to increase the resilience of the system across individual physical variances and to identify the incorrect postures(backward,front,left,and right-leaning)based on the five machine learning algorithms:ensemble boosted trees,ensemble bagged trees,ensemble subspace K-Nearest Neighbors(KNN),ensemble subspace discriminant,and ensemble RUSBoosted trees.The proposed arrangement is novel as existing works have only provided simulations without practical implementation,whereas we have implemented the proposed design in Simulink.The results validate the proposed sensor placements,and the machine learning(ML)model reaches a maximum accuracy of 99.99%,which considerably outperforms the existing works.The proposed concept is valuable as it makes it easier for people in workplaces or even at individual household levels to work for long periods without suffering from severe harmful effects from poor posture.展开更多
Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the eff...Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the efficacy of big data awareness detection systems.We advocate for a collaborative caching approach involving edge devices and cloud networks to combat this.This strategy is devised to streamline the data retrieval path,subsequently diminishing network strain.Crafting an adept cache processing scheme poses its own set of challenges,especially given the transient nature of monitoring data and the imperative for swift data transmission,intertwined with resource allocation tactics.This paper unveils a novel mobile healthcare solution that harnesses the power of our collaborative caching approach,facilitating nuanced health monitoring via edge devices.The system capitalizes on cloud computing for intricate health data analytics,especially in pinpointing health anomalies.Given the dynamic locational shifts and possible connection disruptions,we have architected a hierarchical detection system,particularly during crises.This system caches data efficiently and incorporates a detection utility to assess data freshness and potential lag in response times.Furthermore,we introduce the Cache-Assisted Real-Time Detection(CARD)model,crafted to optimize utility.Addressing the inherent complexity of the NP-hard CARD model,we have championed a greedy algorithm as a solution.Simulations reveal that our collaborative caching technique markedly elevates the Cache Hit Ratio(CHR)and data freshness,outshining its contemporaneous benchmark algorithms.The empirical results underscore the strength and efficiency of our innovative IoHT-based health monitoring solution.To encapsulate,this paper tackles the nuances of real-time health data monitoring in the IoHT landscape,presenting a joint edge-cloud caching strategy paired with a hierarchical detection system.Our methodology yields enhanced cache efficiency and data freshness.The corroborative numerical data accentuates the feasibility and relevance of our model,casting a beacon for the future trajectory of real-time health data monitoring systems.展开更多
In recent years,early detection and warning of fires have posed a significant challenge to environmental protection and human safety.Deep learning models such as Faster R-CNN(Faster Region based Convolutional Neural N...In recent years,early detection and warning of fires have posed a significant challenge to environmental protection and human safety.Deep learning models such as Faster R-CNN(Faster Region based Convolutional Neural Network),YOLO(You Only Look Once),and their variants have demonstrated superiority in quickly detecting objects from images and videos,creating new opportunities to enhance automatic and efficient fire detection.The YOLO model,especially newer versions like YOLOv10,stands out for its fast processing capability,making it suitable for low-latency applications.However,when applied to real-world datasets,the accuracy of fire prediction is still not high.This study improves the accuracy of YOLOv10 for real-time applications through model fine-tuning techniques and data augmentation.The core work of the research involves creating a diverse fire image dataset specifically suited for fire detection applications in buildings and factories,freezing the initial layers of the model to retain general features learned from the dataset by applying the Squeeze and Excitation attention mechanism and employing the Stochastic Gradient Descent(SGD)with a momentum optimization algorithm to enhance accuracy while ensuring real-time fire detection.Experimental results demonstrate the effectiveness of the proposed fire prediction approach,where the YOLOv10 small model exhibits the best balance compared to other YOLO family models such as nano,medium,and balanced.Additionally,the study provides an experimental evaluation to highlight the effectiveness of model fine-tuning compared to the YOLOv10 baseline,YOLOv8 and Faster R-CNN based on two criteria:accuracy and prediction time.展开更多
The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal ac...The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal activity on the network.To reduce these losses,a new fraud detection approach is required.Telecom fraud detection involves identifying a small number of fraudulent calls from a vast amount of call traffic.Developing an effective strategy to combat fraud has become challenging.Although much effort has been made to detect fraud,most existing methods are designed for batch processing,not real-time detection.To solve this problem,we propose an online fraud detection model using a Neural Factorization Autoencoder(NFA),which analyzes customer calling patterns to detect fraudulent calls.The model employs Neural Factorization Machines(NFM)and an Autoencoder(AE)to model calling patterns and a memory module to adapt to changing customer behaviour.We evaluate our approach on a large dataset of real-world call detail records and compare it with several state-of-the-art methods.Our results show that our approach outperforms the baselines,with an AUC of 91.06%,a TPR of 91.89%,an FPR of 14.76%,and an F1-score of 95.45%.These results demonstrate the effectiveness of our approach in detecting fraud in real-time and suggest that it can be a valuable tool for preventing fraud in telecommunications networks.展开更多
Micro-light-emitting diodes(μLEDs)have gained significant interest as an activation source for gas sensors owing to their advantages,including room temperature operation and low power consumption.However,despite thes...Micro-light-emitting diodes(μLEDs)have gained significant interest as an activation source for gas sensors owing to their advantages,including room temperature operation and low power consumption.However,despite these benefits,challenges still exist such as a limited range of detectable gases and slow response.In this study,we present a blueμLED-integrated light-activated gas sensor array based on SnO_(2)nanoparticles(NPs)that exhibit excellent sensitivity,tunable selectivity,and rapid detection with micro-watt level power consumption.The optimal power forμLED is observed at the highest gas response,supported by finite-difference time-domain simulation.Additionally,we first report the visible light-activated selective detection of reducing gases using noble metal-decorated SnO_(2)NPs.The noble metals induce catalytic interaction with reducing gases,clearly distinguishing NH3,H2,and C2H5OH.Real-time gas monitoring based on a fully hardwareimplemented light-activated sensing array was demonstrated,opening up new avenues for advancements in light-activated electronic nose technologies.展开更多
This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t...This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].展开更多
Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achie...Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs.展开更多
This paper presents a vision-based crack detection approach for concrete bridge decks using an integrated one-dimensional convolutional neural network(1D-CNN)and long short-term memory(LSTM)method in the image frequen...This paper presents a vision-based crack detection approach for concrete bridge decks using an integrated one-dimensional convolutional neural network(1D-CNN)and long short-term memory(LSTM)method in the image frequency domain.The so-called 1D-CNN-LSTM algorithm is trained using thousands of images of cracked and non-cracked concrete bridge decks.In order to improve the training efficiency,images are first transformed into the frequency domain during a preprocessing phase.The algorithm is then calibrated using the flattened frequency data.LSTM is used to improve the performance of the developed network for long sequence data.The accuracy of the developed model is 99.05%,98.9%,and 99.25%,respectively,for training,validation,and testing data.An implementation framework is further developed for future application of the trained model for large-scale images.The proposed 1D-CNN-LSTM method exhibits superior performance in comparison with existing deep learning methods in terms of accuracy and computation time.The fast implementation of the 1D-CNN-LSTM algorithm makes it a promising tool for real-time crack detection.展开更多
A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of me...A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of median filter is used to estimate the weld background. After the weld background is subtracted from the original image, an adaptite threshold segmentation algorithm is proposed to obtain the binary image, and then the morphological close and open operation, labeling algorithm and fids'e alarm eliminating algorithm are applied to pracess the binary image to obtain the defect, ct detection result. At last, a fast realization procedure jbr proposed method is developed. The proposed method is tested in real-time X-ray image,s obtairted in different X-ray imaging sutems. Experiment results show that the proposed method is effective to detect low contrast weld dejects with few .false alarms and is adaptive to various types of real-time X-ray imaging systems.展开更多
Burkholderia glumae causing seedling rot and grain rot of rice was listed as a plant quarantine disease of China in 2007. It's quite necessary to set up effective detection methods for the pathogen to manage further ...Burkholderia glumae causing seedling rot and grain rot of rice was listed as a plant quarantine disease of China in 2007. It's quite necessary to set up effective detection methods for the pathogen to manage further dispersal of this disease. The present study combined the real-time PCR method with classical PCR to increase the detecting efficiency, and to develop an accurate, rapid and sensitive method to detect the pathogen in the seed quarantine for effective management of the disease. The results showed that all the tested strains of B. glumae produced about 139 bp specific fragments by the real-time PCR and the general PCR methods, while others showed negative PCR result. The bacteria could be detected at the concentrations of 1×10^4 CFU/mL by general PCR method and at the concentrations below 100 CFU/mL by real-time fluorescence PCR method. B. glumae could be detected when the inoculated and healthy seeds were mixed with a proportion of 1:100.展开更多
AIM: To compare the ligase detection reaction (LDR) and real-time PCR for detection of low abundant YMDD mutants in patients with chronic hepatitis B infection.METHODS: Mixtures of plasmids and serum samples from 52 c...AIM: To compare the ligase detection reaction (LDR) and real-time PCR for detection of low abundant YMDD mutants in patients with chronic hepatitis B infection.METHODS: Mixtures of plasmids and serum samples from 52 chronic hepatitis B patients with low abundant lamivudine-resistant mutations were tested with LDR and real-time PCR. Time required and reagent cost for both assays were evaluated.RESULTS: Real-time PCR detected 100, 50, 10, 1 and 0.1% of YIDD plasmid, whereas LDR detected 100, 50, 10, 1, 0.1, and 0.01% of YIDD plasmid, in mixtures with YMDD plasmid of 106 copies/mL. Among the 52 clinical serum samples, completely concordant results were obtained for all samples by both assays, and 39 YIDD, 9 YVDD, and 4 YIDD/YVDD were detected. Cost and time required for LDR and real-time PCR are 60/80 CNY (8/10.7 US dollars) and 4.5/2.5 h, respectively.CONCLUSION: LDR and real-time PCR are both sensitive and inexpensive methods for monitoring low abundant YMDD mutants during lamivudine therapy in patients with chronic hepatitis B. LDR is more sensitive and less expensive, while real-time PCR is more rapid.展开更多
Edwardsiella tarda has become one of the most important emerging pathogens in aquaculture industry. Therefore, a rapid, reproducible, and sensitive method for detection and quantification of this pathogen is needed ur...Edwardsiella tarda has become one of the most important emerging pathogens in aquaculture industry. Therefore, a rapid, reproducible, and sensitive method for detection and quantification of this pathogen is needed urgently. To achieve this purpose, we developed a TaqMan-based real-time PCR assay for detection and quantification orE. tarda. The assay targets the hemolysin activator HlyB domain protein of E. tarda. Our optimized TaqMan assay is capable of detecting as little as 40 fg of genomic DNA per reaction. A standard curve was generated from the threshold cycle values (y) against log10 (E. tarda genomic DNA concentration) as x. The intra- and inter-assay coefficient of variation (CV) values were less than 2.06% and 1.05% respectively, indicating that the assay had good reproducibility. This method is highly specific to E. tarda strains, as it shows no cross-reactivity to Edwardsiella ictaluri, a member of the same genus, or to nine other fish-pathogenic bacteria species belonging to three other genera. This sensitive and specific real-time PCR assay provides a valuable tool for diagnostic quantitation of E. tarda in clinical samples.展开更多
基金funded by Anhui Provincial Natural Science Foundation(No.2208085ME128)the Anhui University-Level Special Project of Anhui University of Science and Technology(No.XCZX2021-01)+1 种基金the Research and the Development Fund of the Institute of Environmental Friendly Materials and Occupational Health,Anhui University of Science and Technology(No.ALW2022YF06)Anhui Province New Era Education Quality Project(Graduate Education)(No.2022xscx073).
文摘The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-ronment is a challenging task.Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy.To this end,the present study proposes an Efficient YOLACT(E-YOLACT)algorithm for strawberry detection and segmentation based on the YOLACT framework.The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism,pyramid squeeze shuffle attention(PSSA),for efficient feature extraction.Additionally,an attention-guided context-feature pyramid network(AC-FPN)is employed instead of FPN to optimize the architecture’s performance.Furthermore,a feature-enhanced model(FEM)is introduced to enhance the prediction head’s capabilities,while efficient fast non-maximum suppression(EF-NMS)is devised to improve non-maximum suppression.The experimental results demonstrate that the E-YOLACT achieves a Box-mAP and Mask-mAP of 77.9 and 76.6,respectively,on the custom dataset.Moreover,it exhibits an impressive category accuracy of 93.5%.Notably,the E-YOLACT also demonstrates a remarkable real-time detection capability with a speed of 34.8 FPS.The method proposed in this article presents an efficient approach for the vision system of a strawberry-picking robot.
基金supported by theKorea Industrial Technology Association(KOITA)Grant Funded by the Korean government(MSIT)(No.KOITA-2023-3-003)supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)Support Program(IITP-2024-2020-0-01808)Supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)。
文摘The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional approaches primarily focus on broad applications such as wayfinding,obstacle detection,and fall prevention.However,there is a notable discrepancy in applying these technologies to more specific scenarios,like identifying distinct food crop types or recognizing faces.This study proposes a real-time application designed for visually impaired individuals,aiming to bridge this research-application gap.It introduces a system capable of detecting 20 different food crop types and recognizing faces with impressive accuracies of 83.27%and 95.64%,respectively.These results represent a significant contribution to the field of assistive technologies,providing visually impaired users with detailed and relevant information about their surroundings,thereby enhancing their mobility and ensuring their safety.Additionally,it addresses the vital aspects of social engagements,acknowledging the challenges faced by visually impaired individuals in recognizing acquaintances without auditory or tactile signals,and highlights recent developments in prototype systems aimed at assisting with face recognition tasks.This comprehensive approach not only promises enhanced navigational aids but also aims to enrich the social well-being and safety of visually impaired communities.
文摘Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance.
文摘Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The method adopts the overall design of backbone network, detection network and algorithmic parameter optimisation method, completes the model training on the self-constructed occlusion target dataset, and adopts the multi-scale perception method for target detection. The HNM algorithm is used to screen positive and negative samples during the training process, and the NMS algorithm is used to post-process the prediction results during the detection process to improve the detection efficiency. After experimental validation, the obtained model has the multi-class average predicted value (mAP) of the dataset. It has general advantages over traditional target detection methods. The detection time of a single target on FDDB dataset is 39 ms, which can meet the need of real-time target detection. In addition, the project team has successfully deployed the method into substations and put it into use in many places in Beijing, which is important for achieving the anomaly of occlusion target detection.
基金supported by the National Nature Science Foundation of China under 62203376the Science and Technology Plan of Hebei Education Department under QN2021139+1 种基金the Nature Science Foundation of Hebei Province under F2021203043the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology under No.XTCX202203.
文摘Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.
基金supported by the National Natural Science Foundation of China(Grant No.U1636208,No.61862008,No.61902013)the Beihang Youth Top Talent Support Program(Grant No.YWF-21-BJJ-1039)。
文摘Network intrusion poses a severe threat to the Internet.However,existing intrusion detection models cannot effectively distinguish different intrusions with high-degree feature overlap.In addition,efficient real-time detection is an urgent problem.To address the two above problems,we propose a Latent Dirichlet Allocation topic model-based framework for real-time network Intrusion Detection(LDA-ID),consisting of static and online LDA-ID.The problem of feature overlap is transformed into static LDA-ID topic number optimization and topic selection.Thus,the detection is based on the latent topic features.To achieve efficient real-time detection,we design an online computing mode for static LDA-ID,in which a parameter iteration method based on momentum is proposed to balance the contribution of prior knowledge and new information.Furthermore,we design two matching mechanisms to accommodate the static and online LDA-ID,respectively.Experimental results on the public NSL-KDD and UNSW-NB15 datasets show that our framework gets higher accuracy than the others.
基金supported financially by the National Natural Science Foundation of China (Grant Nos.22078051 and U1801258)the Fundamental Research Funds for the Central Universities (Grant No.DUT22LAB610).
文摘Being cheap,nondestructive,and easy to use,gas sensors play important roles in the food industry.However,most gas sensors are suitable more for laboratory-quality fast testing rather than for cold-chain continuous and cumulative testing.Also,an ideal electronic nose(E-nose)in a cold chain should be stable to its surroundings and remain highly accurate and portable.In this work,a portable film bulk acoustic resonator(FBAR)-based E-nose was built for real-time measurement of banana shelf time.The sensor chamber to contain the portable circuit of the E-nose is as small as a smartphone,and by introducing an air-tight FBAR as a reference,the E-nose can avoid most of the drift caused by surroundings.With the help of porous layer by layer(LBL)coating of the FBAR,the sensitivity of the E-nose is 5 ppm to ethylene and 0.5 ppm to isoamyl acetate and isoamyl butyrate,while the detection range is large enough to cover a relative humidity of 0.8.In this regard,the E-nose can easily discriminate between yellow bananas with green necks and entirely yellow bananas while allowing the bananas to maintain their biological activities in their normal storage state,thereby showing the possibility of real-time shelf time detection.This portable FBAR-based E-nose has a large testing scale,high sensitivity,good humidity tolerance,and low frequency drift to its surroundings,thereby meeting the needs of cold-chain usage.
文摘The continuous operation of On-Load Tap-Changers (OLTC) is essential for maintaining stable voltage levels in power transmission and distribution systems. Timely fault detection in OLTC is essential for preventing major failures and ensuring the reliability of the electrical grid. This research paper proposes an innovative approach that combines voiceprint detection using MATLAB analysis for online fault monitoring of OLTC. By leveraging advanced signal processing techniques and machine learning algorithms in MATLAB, the proposed method accurately detects faults in OLTC, providing real-time monitoring and proactive maintenance strategies.
文摘To detect the improper sitting posture of a person sitting on a chair,a posture detection system using machine learning classification has been proposed in this work.The addressed problem correlates to the third Sustainable Development Goal(SDG),ensuring healthy lives and promoting well-being for all ages,as specified by the World Health Organization(WHO).An improper sitting position can be fatal if one sits for a long time in the wrong position,and it can be dangerous for ulcers and lower spine discomfort.This novel study includes a practical implementation of a cushion consisting of a grid of 3×3 force-sensitive resistors(FSR)embedded to read the pressure of the person sitting on it.Additionally,the Body Mass Index(BMI)has been included to increase the resilience of the system across individual physical variances and to identify the incorrect postures(backward,front,left,and right-leaning)based on the five machine learning algorithms:ensemble boosted trees,ensemble bagged trees,ensemble subspace K-Nearest Neighbors(KNN),ensemble subspace discriminant,and ensemble RUSBoosted trees.The proposed arrangement is novel as existing works have only provided simulations without practical implementation,whereas we have implemented the proposed design in Simulink.The results validate the proposed sensor placements,and the machine learning(ML)model reaches a maximum accuracy of 99.99%,which considerably outperforms the existing works.The proposed concept is valuable as it makes it easier for people in workplaces or even at individual household levels to work for long periods without suffering from severe harmful effects from poor posture.
基金supported by National Natural Science Foundation of China(NSFC)under Grant Number T2350710232.
文摘Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the efficacy of big data awareness detection systems.We advocate for a collaborative caching approach involving edge devices and cloud networks to combat this.This strategy is devised to streamline the data retrieval path,subsequently diminishing network strain.Crafting an adept cache processing scheme poses its own set of challenges,especially given the transient nature of monitoring data and the imperative for swift data transmission,intertwined with resource allocation tactics.This paper unveils a novel mobile healthcare solution that harnesses the power of our collaborative caching approach,facilitating nuanced health monitoring via edge devices.The system capitalizes on cloud computing for intricate health data analytics,especially in pinpointing health anomalies.Given the dynamic locational shifts and possible connection disruptions,we have architected a hierarchical detection system,particularly during crises.This system caches data efficiently and incorporates a detection utility to assess data freshness and potential lag in response times.Furthermore,we introduce the Cache-Assisted Real-Time Detection(CARD)model,crafted to optimize utility.Addressing the inherent complexity of the NP-hard CARD model,we have championed a greedy algorithm as a solution.Simulations reveal that our collaborative caching technique markedly elevates the Cache Hit Ratio(CHR)and data freshness,outshining its contemporaneous benchmark algorithms.The empirical results underscore the strength and efficiency of our innovative IoHT-based health monitoring solution.To encapsulate,this paper tackles the nuances of real-time health data monitoring in the IoHT landscape,presenting a joint edge-cloud caching strategy paired with a hierarchical detection system.Our methodology yields enhanced cache efficiency and data freshness.The corroborative numerical data accentuates the feasibility and relevance of our model,casting a beacon for the future trajectory of real-time health data monitoring systems.
文摘In recent years,early detection and warning of fires have posed a significant challenge to environmental protection and human safety.Deep learning models such as Faster R-CNN(Faster Region based Convolutional Neural Network),YOLO(You Only Look Once),and their variants have demonstrated superiority in quickly detecting objects from images and videos,creating new opportunities to enhance automatic and efficient fire detection.The YOLO model,especially newer versions like YOLOv10,stands out for its fast processing capability,making it suitable for low-latency applications.However,when applied to real-world datasets,the accuracy of fire prediction is still not high.This study improves the accuracy of YOLOv10 for real-time applications through model fine-tuning techniques and data augmentation.The core work of the research involves creating a diverse fire image dataset specifically suited for fire detection applications in buildings and factories,freezing the initial layers of the model to retain general features learned from the dataset by applying the Squeeze and Excitation attention mechanism and employing the Stochastic Gradient Descent(SGD)with a momentum optimization algorithm to enhance accuracy while ensuring real-time fire detection.Experimental results demonstrate the effectiveness of the proposed fire prediction approach,where the YOLOv10 small model exhibits the best balance compared to other YOLO family models such as nano,medium,and balanced.Additionally,the study provides an experimental evaluation to highlight the effectiveness of model fine-tuning compared to the YOLOv10 baseline,YOLOv8 and Faster R-CNN based on two criteria:accuracy and prediction time.
基金This research work has been conducted in cooperation with members of DETSI project supported by BPI France and Pays de Loire and Auvergne Rhone Alpes.
文摘The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal activity on the network.To reduce these losses,a new fraud detection approach is required.Telecom fraud detection involves identifying a small number of fraudulent calls from a vast amount of call traffic.Developing an effective strategy to combat fraud has become challenging.Although much effort has been made to detect fraud,most existing methods are designed for batch processing,not real-time detection.To solve this problem,we propose an online fraud detection model using a Neural Factorization Autoencoder(NFA),which analyzes customer calling patterns to detect fraudulent calls.The model employs Neural Factorization Machines(NFM)and an Autoencoder(AE)to model calling patterns and a memory module to adapt to changing customer behaviour.We evaluate our approach on a large dataset of real-world call detail records and compare it with several state-of-the-art methods.Our results show that our approach outperforms the baselines,with an AUC of 91.06%,a TPR of 91.89%,an FPR of 14.76%,and an F1-score of 95.45%.These results demonstrate the effectiveness of our approach in detecting fraud in real-time and suggest that it can be a valuable tool for preventing fraud in telecommunications networks.
基金supported by the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(RS-2024-00405016)supported by“Cooperative Research Program for Agriculture Science and Technology Development(Project No.PJ01706703)”Rural Development Administration,Republic of Korea.The Inter-University Semiconductor Research Center and Institute of Engineering Research at Seoul National University provided research facilities for this work.
文摘Micro-light-emitting diodes(μLEDs)have gained significant interest as an activation source for gas sensors owing to their advantages,including room temperature operation and low power consumption.However,despite these benefits,challenges still exist such as a limited range of detectable gases and slow response.In this study,we present a blueμLED-integrated light-activated gas sensor array based on SnO_(2)nanoparticles(NPs)that exhibit excellent sensitivity,tunable selectivity,and rapid detection with micro-watt level power consumption.The optimal power forμLED is observed at the highest gas response,supported by finite-difference time-domain simulation.Additionally,we first report the visible light-activated selective detection of reducing gases using noble metal-decorated SnO_(2)NPs.The noble metals induce catalytic interaction with reducing gases,clearly distinguishing NH3,H2,and C2H5OH.Real-time gas monitoring based on a fully hardwareimplemented light-activated sensing array was demonstrated,opening up new avenues for advancements in light-activated electronic nose technologies.
文摘This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].
基金National Natural Science Foundation of China(No.61302159,61227003,61301259)Natual Science Foundation of Shanxi Province(No.2012021011-2)+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education,China(No.20121420110006)Top Science and Technology Innovation Teams of Higher Learning Institutions of Shanxi Province,ChinaProject Sponsored by Scientific Research for the Returned Overseas Chinese Scholars,Shanxi Province(No.2013-083)
文摘Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs.
文摘This paper presents a vision-based crack detection approach for concrete bridge decks using an integrated one-dimensional convolutional neural network(1D-CNN)and long short-term memory(LSTM)method in the image frequency domain.The so-called 1D-CNN-LSTM algorithm is trained using thousands of images of cracked and non-cracked concrete bridge decks.In order to improve the training efficiency,images are first transformed into the frequency domain during a preprocessing phase.The algorithm is then calibrated using the flattened frequency data.LSTM is used to improve the performance of the developed network for long sequence data.The accuracy of the developed model is 99.05%,98.9%,and 99.25%,respectively,for training,validation,and testing data.An implementation framework is further developed for future application of the trained model for large-scale images.The proposed 1D-CNN-LSTM method exhibits superior performance in comparison with existing deep learning methods in terms of accuracy and computation time.The fast implementation of the 1D-CNN-LSTM algorithm makes it a promising tool for real-time crack detection.
文摘A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of median filter is used to estimate the weld background. After the weld background is subtracted from the original image, an adaptite threshold segmentation algorithm is proposed to obtain the binary image, and then the morphological close and open operation, labeling algorithm and fids'e alarm eliminating algorithm are applied to pracess the binary image to obtain the defect, ct detection result. At last, a fast realization procedure jbr proposed method is developed. The proposed method is tested in real-time X-ray image,s obtairted in different X-ray imaging sutems. Experiment results show that the proposed method is effective to detect low contrast weld dejects with few .false alarms and is adaptive to various types of real-time X-ray imaging systems.
基金supported by National Natural Science Foundation of China(Grant No.30671397 and No.30871655)the Public Beneficial Research Project of Agricultural Ministry,China(Grant No.nyhyzx07-056)
文摘Burkholderia glumae causing seedling rot and grain rot of rice was listed as a plant quarantine disease of China in 2007. It's quite necessary to set up effective detection methods for the pathogen to manage further dispersal of this disease. The present study combined the real-time PCR method with classical PCR to increase the detecting efficiency, and to develop an accurate, rapid and sensitive method to detect the pathogen in the seed quarantine for effective management of the disease. The results showed that all the tested strains of B. glumae produced about 139 bp specific fragments by the real-time PCR and the general PCR methods, while others showed negative PCR result. The bacteria could be detected at the concentrations of 1×10^4 CFU/mL by general PCR method and at the concentrations below 100 CFU/mL by real-time fluorescence PCR method. B. glumae could be detected when the inoculated and healthy seeds were mixed with a proportion of 1:100.
文摘AIM: To compare the ligase detection reaction (LDR) and real-time PCR for detection of low abundant YMDD mutants in patients with chronic hepatitis B infection.METHODS: Mixtures of plasmids and serum samples from 52 chronic hepatitis B patients with low abundant lamivudine-resistant mutations were tested with LDR and real-time PCR. Time required and reagent cost for both assays were evaluated.RESULTS: Real-time PCR detected 100, 50, 10, 1 and 0.1% of YIDD plasmid, whereas LDR detected 100, 50, 10, 1, 0.1, and 0.01% of YIDD plasmid, in mixtures with YMDD plasmid of 106 copies/mL. Among the 52 clinical serum samples, completely concordant results were obtained for all samples by both assays, and 39 YIDD, 9 YVDD, and 4 YIDD/YVDD were detected. Cost and time required for LDR and real-time PCR are 60/80 CNY (8/10.7 US dollars) and 4.5/2.5 h, respectively.CONCLUSION: LDR and real-time PCR are both sensitive and inexpensive methods for monitoring low abundant YMDD mutants during lamivudine therapy in patients with chronic hepatitis B. LDR is more sensitive and less expensive, while real-time PCR is more rapid.
基金Supported by the Special Fund for Agro-scientific Research in the Public Interest(No.201103034)the Construction Special Fund of Modern Agriculture and Industrial Technology Research System(No.CARS-47)
文摘Edwardsiella tarda has become one of the most important emerging pathogens in aquaculture industry. Therefore, a rapid, reproducible, and sensitive method for detection and quantification of this pathogen is needed urgently. To achieve this purpose, we developed a TaqMan-based real-time PCR assay for detection and quantification orE. tarda. The assay targets the hemolysin activator HlyB domain protein of E. tarda. Our optimized TaqMan assay is capable of detecting as little as 40 fg of genomic DNA per reaction. A standard curve was generated from the threshold cycle values (y) against log10 (E. tarda genomic DNA concentration) as x. The intra- and inter-assay coefficient of variation (CV) values were less than 2.06% and 1.05% respectively, indicating that the assay had good reproducibility. This method is highly specific to E. tarda strains, as it shows no cross-reactivity to Edwardsiella ictaluri, a member of the same genus, or to nine other fish-pathogenic bacteria species belonging to three other genera. This sensitive and specific real-time PCR assay provides a valuable tool for diagnostic quantitation of E. tarda in clinical samples.