The principle of real-time look-ahead was introduced and analysed. An adaptive parametric curve interpolator with a real-time look-ahead function was developed for non-uniform rational B-spline (NURBS) curves interpol...The principle of real-time look-ahead was introduced and analysed. An adaptive parametric curve interpolator with a real-time look-ahead function was developed for non-uniform rational B-spline (NURBS) curves interpolation, which considering the maximum acceleration/deceleration of the machine tool. In order to deal with the acceleration/deceleration around the feedrate sensitive corners, the look-ahead function was designed and illustrated. It can detect and adjust the feedrate adaptively. With the help of real-time look-ahead, the acceleration/deceleration can be limited to the range of the machine tool capacity. Thus, feedrate fluctuation is reduced. A NURBS curve interpolation experiment was provided to verify the feasibility and advantages of the proposed interpolator with a real-time look-ahead function.展开更多
A real-time non-uniform rational B-spline (NURBS) surface interpolator is proposed and 5-axis machining method with a flat-end cutter is discussed. With the Taylor expansion and the coordinate transformation, the al...A real-time non-uniform rational B-spline (NURBS) surface interpolator is proposed and 5-axis machining method with a flat-end cutter is discussed. With the Taylor expansion and the coordinate transformation, the algorithms of NURBS interpolation, cutter effective machining radius, cutter offsetting and.inverse kinematics are deduced and implemented, respectively. Different from the conventional free-form surface machining, the proposed interpolator can real-time generate the motion commands of computer numerical control (CNC) machines with CC feedrate, rather than that of CL. An example part surface is demonstrated and the results of simulation show that the proposed method can be applied in actual 5-axis surface machining.展开更多
Background Petrochemical products possess a high risk of flammability,explosivity,and toxicity,making petrochemical accidents exceedingly destructive.Therefore,disaster analysis,prediction,and real-time simulations ha...Background Petrochemical products possess a high risk of flammability,explosivity,and toxicity,making petrochemical accidents exceedingly destructive.Therefore,disaster analysis,prediction,and real-time simulations have become important means of controlling and reducing accident hazards.Methods This study proposes a complete real-time simulation solution of gas diffusion with coordinate and concentration data,which was mainly aimed at simulating the types of harmful gas leakage and diffusion accidents in the petrochemical industry.The rendering effect was more continuous and accurate through grid homogenization and trilinear interpolation.This study presents a data processing and rendering parallelization process to enhance simulation efficiency.Gas concentration and fragment transparency were combined to synthesize transparent pixels in a scene.To ensure the approximate accuracy of the rendering effect,improve the efficiency of real-time rendering,and meet the requirement of intuitive perception using concentration data,a weighted blended order-independent transparency(OIT)with enhanced alpha weight is presented,which can provide a more intuitive perception of the hierarchical information of concentration data while preserving depth information.This study compares and analyzes three OIT algorithms-depth peeling,weighted blended OIT,and weighted blended OIT with enhanced alpha weight-in terms of rendering image quality,rendering time,required memory,and hierarchical information.Results Using weighted blended OIT with an enhanced alpha weight technique,the rendering time was shortened by 53.2%compared with that of the depth peeling algorithm,and the texture memory required was significantly smaller than that of the depth peeling algorithm.The rendering results of weighted blended OIT with an enhanced alpha weight were approximately accurate compared with those of the depth peeling algorithm as the ground truth,and there was no popping when surfaces passed through one another.Simultaneously,compared with weighted blended OIT,weighted blended OIT with an enhanced alpha weight achieved an intuitive perception of the hierarchical information of concentration data.展开更多
To avoid suffering gouge and transient overshooting in high speed cutting machining, a novel parametefized curve interpolator model with velocity look-ahead algorithm is proposed. Based on a prearrangement step interp...To avoid suffering gouge and transient overshooting in high speed cutting machining, a novel parametefized curve interpolator model with velocity look-ahead algorithm is proposed. Based on a prearrangement step interpolation algorithm for parameterized curves and considering high curvature points, parameterized curve tool path is divided into acceleration segments and deceleration segments by look-ahead algorithm. Under condition of characteristics of acceleration and deceleration stored in control system, deceleration before high curvature points and acceleration after high curvature points are realized in real-time in high speed cutting machining. Based on new parameterized curve interpolator model with velocity look-ahead algorithm, a real cubic spline is machined simulativly. The simulation results show that velocity look-ahead algorithm improves velocity changing more smoothly.展开更多
To completely eliminate the time delays caused by phasor data compressions for real-time synchrophasor applications,a real-time synchrophasor data compression(RSDC)is proposed in this paper.The two-way rotation charac...To completely eliminate the time delays caused by phasor data compressions for real-time synchrophasor applications,a real-time synchrophasor data compression(RSDC)is proposed in this paper.The two-way rotation characteristic and elliptical trajectory of dynamic synchrophasors are introduced first to enhance the compressions along with a fast solving method for elliptical trajectory fitting equations.The RSDC for phasor data compression and reconstruction is then proposed by combining the interpolation and extrapolation compressions.The proposed RSDC is verified by both the actual phasor measurement data recorded in a two-phase short-circuit incident and a subsynchronous oscillation incident,and the synthetic dynamic synchrophasors.It is also compared with two previous real-time phasor data compression techniques,i.e.,phasor swing door trending(PSDT)and exception and swing door trending(SDT)data compression(ESDC).The verification results demonstrate that RSDC can achieve significantly higher compression ratios for offline applications with the interpolation and the zero-delay phasor data compression with the extrapolation for real-time applications simultaneously.展开更多
CNC machining plays an important role in mechanical manufacturing.A key issue is to improve the machining feedrate while keeping the machining precision and satisfying the acceleration constraints of the CNC machine.F...CNC machining plays an important role in mechanical manufacturing.A key issue is to improve the machining feedrate while keeping the machining precision and satisfying the acceleration constraints of the CNC machine.For the consecutive micro-line segments interpolation,the velocities at the junction of two segments are the bottlenecks for the machining efficiency.This paper proposes a multi-period turning method to improve the feedrate at the junctions using the linear acceleration and deceleration mode,which utilizes the maximal acceleration capabilities of the NC machine while satisfying the machining precision.A new and more efficient look-ahead method and a feedrate override method are also proposed to boast the global machining speed.The proposed algorithm has been implemented on Blue Sky NC System,and experimented in real material manufacturing.Compared with several existing algorithms,the current algorithm can improve the manufacturing time ranging from 50% to 180%,depending on the machining parameters,and also results in better machining quality.In addition,the algorithm also satisfies the need of real-time interpolation.展开更多
Generally complex 3D contours are divided into a lot of continuous small line blocks by CAD/CAM software. When these small line blocks are used in conventional way,machine tool has to stop at the end of one move befor...Generally complex 3D contours are divided into a lot of continuous small line blocks by CAD/CAM software. When these small line blocks are used in conventional way,machine tool has to stop at the end of one move before continuing on to the next to meet accuracy requirement,which results in inefficiency.Look-ahead is an intelligent function that aims at adjusting the feed rate automatically to achieve maximum productivity while maintaining accuracy.By now most researchers just utilize the simplest linear acceleration(ACC)and deceleration(DEC)to deal with look-ahead intelligence.A generalized ACC/DEC ap- proach and corresponding optimal look-ahead algorithm based on dynamic back tracking along a doubly linked list are proposed.An improved rounding strategy for reducing interpolation errors is also presented.By using the proposed techniques,arbitrary velocity profiles that offer look-ahead feature and have the desired ACC/DEC characteristics for movement of a lot of continuous line blocks can be generated efficiently.Both simulations and experiments showed the productivity was dramatically increased without sacri- fice of accuracy.展开更多
A novel five-axis real-time interpolation algorithm for 3[PP]S-XY hybrid mechanism is proposed in this paper. In the algorithm, the five-axis tool path for controlling this hybrid mechanism is separated into two sub-p...A novel five-axis real-time interpolation algorithm for 3[PP]S-XY hybrid mechanism is proposed in this paper. In the algorithm, the five-axis tool path for controlling this hybrid mechanism is separated into two sub-paths. One sub-path describes the movement of 3[PP]S parallel kinematic mechanism module, and the other one describes the movement of XY platform. A pair of cubic Bezier curves is employed to smooth the corners in those two sub-paths. Based on the homogenous Jacobian matrix of 3[PP]S mechanism, a relationship between the position errors of every driving joint in hybrid mechanism and the position deviation of the tool tip center point at the moving platform is established. This relationship is used to estimate the approximation error for the corners smoothing according to the accuracy requirement of tool tip center in interpolation. Due to the high computational efficiency of this corner smoothing method, it is integrated into the look-ahead module of computer numerical control(CNC) system to perform online tool path smoothing. By performing the speed planning based on a floating window scheme, a jerk limited S-shape speed profile can be generated efficiently. On this basis, a realtime look-ahead scheme, which is comprised of path-smoothing and feedrate scheduling, is developed to acquire a speed profile with smooth acceleration. A monotonic cubic spline is employed for synchronization between those two smoothed sub-paths in tool path interpolation. This interpolation algorithm has been integrated into our own developed CNC system to control a 3PRS-XY experimental instrument(P, R and S standing for prismatic,revolute and spherical, respectively). A club shaped trajectory is adopted to verify the smoothness and efficiency of the five-axis interpolator for hybrid mechanism control.展开更多
In this article,an effective technique is developed to efficiently obtain the output responses of parameterized structural dynamic problems.This technique is based on the conception of reduced basis method and the usa...In this article,an effective technique is developed to efficiently obtain the output responses of parameterized structural dynamic problems.This technique is based on the conception of reduced basis method and the usage of linear interpolation principle.The original problem is projected onto the reduced basis space by linear interpolation projection,and subsequently an associated interpolation matrix is generated.To ensure the largest nonsingularity,the interpolation matrix needs to go through a timenode choosing process,which is developed by applying the angle of vector spaces.As a part of this technique,error estimation is recommended for achieving the computational error bound.To ensure the successful performance of this technique,the offline-online computational procedures are conducted in practical engineering.Two numerical examples demonstrate the accuracy and efficiency of the presented method.展开更多
文摘The principle of real-time look-ahead was introduced and analysed. An adaptive parametric curve interpolator with a real-time look-ahead function was developed for non-uniform rational B-spline (NURBS) curves interpolation, which considering the maximum acceleration/deceleration of the machine tool. In order to deal with the acceleration/deceleration around the feedrate sensitive corners, the look-ahead function was designed and illustrated. It can detect and adjust the feedrate adaptively. With the help of real-time look-ahead, the acceleration/deceleration can be limited to the range of the machine tool capacity. Thus, feedrate fluctuation is reduced. A NURBS curve interpolation experiment was provided to verify the feasibility and advantages of the proposed interpolator with a real-time look-ahead function.
文摘A real-time non-uniform rational B-spline (NURBS) surface interpolator is proposed and 5-axis machining method with a flat-end cutter is discussed. With the Taylor expansion and the coordinate transformation, the algorithms of NURBS interpolation, cutter effective machining radius, cutter offsetting and.inverse kinematics are deduced and implemented, respectively. Different from the conventional free-form surface machining, the proposed interpolator can real-time generate the motion commands of computer numerical control (CNC) machines with CC feedrate, rather than that of CL. An example part surface is demonstrated and the results of simulation show that the proposed method can be applied in actual 5-axis surface machining.
基金Supported by National Key R&D Program of China (2020YFB1710400)。
文摘Background Petrochemical products possess a high risk of flammability,explosivity,and toxicity,making petrochemical accidents exceedingly destructive.Therefore,disaster analysis,prediction,and real-time simulations have become important means of controlling and reducing accident hazards.Methods This study proposes a complete real-time simulation solution of gas diffusion with coordinate and concentration data,which was mainly aimed at simulating the types of harmful gas leakage and diffusion accidents in the petrochemical industry.The rendering effect was more continuous and accurate through grid homogenization and trilinear interpolation.This study presents a data processing and rendering parallelization process to enhance simulation efficiency.Gas concentration and fragment transparency were combined to synthesize transparent pixels in a scene.To ensure the approximate accuracy of the rendering effect,improve the efficiency of real-time rendering,and meet the requirement of intuitive perception using concentration data,a weighted blended order-independent transparency(OIT)with enhanced alpha weight is presented,which can provide a more intuitive perception of the hierarchical information of concentration data while preserving depth information.This study compares and analyzes three OIT algorithms-depth peeling,weighted blended OIT,and weighted blended OIT with enhanced alpha weight-in terms of rendering image quality,rendering time,required memory,and hierarchical information.Results Using weighted blended OIT with an enhanced alpha weight technique,the rendering time was shortened by 53.2%compared with that of the depth peeling algorithm,and the texture memory required was significantly smaller than that of the depth peeling algorithm.The rendering results of weighted blended OIT with an enhanced alpha weight were approximately accurate compared with those of the depth peeling algorithm as the ground truth,and there was no popping when surfaces passed through one another.Simultaneously,compared with weighted blended OIT,weighted blended OIT with an enhanced alpha weight achieved an intuitive perception of the hierarchical information of concentration data.
基金Special Project for Key Mechatronic Equipment of Zhejiang Province,China (No.2006Cl1067)Science & Technology Project of Zhejiang Province,China (No. 2005E10049)
文摘To avoid suffering gouge and transient overshooting in high speed cutting machining, a novel parametefized curve interpolator model with velocity look-ahead algorithm is proposed. Based on a prearrangement step interpolation algorithm for parameterized curves and considering high curvature points, parameterized curve tool path is divided into acceleration segments and deceleration segments by look-ahead algorithm. Under condition of characteristics of acceleration and deceleration stored in control system, deceleration before high curvature points and acceleration after high curvature points are realized in real-time in high speed cutting machining. Based on new parameterized curve interpolator model with velocity look-ahead algorithm, a real cubic spline is machined simulativly. The simulation results show that velocity look-ahead algorithm improves velocity changing more smoothly.
基金supported by Fundamental Research Funds for the Central Universities(No.2019RC006)National Natural Science Foundation of China(No.52077004)。
文摘To completely eliminate the time delays caused by phasor data compressions for real-time synchrophasor applications,a real-time synchrophasor data compression(RSDC)is proposed in this paper.The two-way rotation characteristic and elliptical trajectory of dynamic synchrophasors are introduced first to enhance the compressions along with a fast solving method for elliptical trajectory fitting equations.The RSDC for phasor data compression and reconstruction is then proposed by combining the interpolation and extrapolation compressions.The proposed RSDC is verified by both the actual phasor measurement data recorded in a two-phase short-circuit incident and a subsynchronous oscillation incident,and the synthetic dynamic synchrophasors.It is also compared with two previous real-time phasor data compression techniques,i.e.,phasor swing door trending(PSDT)and exception and swing door trending(SDT)data compression(ESDC).The verification results demonstrate that RSDC can achieve significantly higher compression ratios for offline applications with the interpolation and the zero-delay phasor data compression with the extrapolation for real-time applications simultaneously.
基金supported by the National Key Basic Research Project of China (Grant Nos 2011CB302400)the National Natural Science Foundation of China (Grant Nos 60821002, 10871195, 10925105)+1 种基金Major National S&T Project "Advanced CNC Systems"CAS Project "MM Methods for Advanced CNC Systems"
文摘CNC machining plays an important role in mechanical manufacturing.A key issue is to improve the machining feedrate while keeping the machining precision and satisfying the acceleration constraints of the CNC machine.For the consecutive micro-line segments interpolation,the velocities at the junction of two segments are the bottlenecks for the machining efficiency.This paper proposes a multi-period turning method to improve the feedrate at the junctions using the linear acceleration and deceleration mode,which utilizes the maximal acceleration capabilities of the NC machine while satisfying the machining precision.A new and more efficient look-ahead method and a feedrate override method are also proposed to boast the global machining speed.The proposed algorithm has been implemented on Blue Sky NC System,and experimented in real material manufacturing.Compared with several existing algorithms,the current algorithm can improve the manufacturing time ranging from 50% to 180%,depending on the machining parameters,and also results in better machining quality.In addition,the algorithm also satisfies the need of real-time interpolation.
文摘Generally complex 3D contours are divided into a lot of continuous small line blocks by CAD/CAM software. When these small line blocks are used in conventional way,machine tool has to stop at the end of one move before continuing on to the next to meet accuracy requirement,which results in inefficiency.Look-ahead is an intelligent function that aims at adjusting the feed rate automatically to achieve maximum productivity while maintaining accuracy.By now most researchers just utilize the simplest linear acceleration(ACC)and deceleration(DEC)to deal with look-ahead intelligence.A generalized ACC/DEC ap- proach and corresponding optimal look-ahead algorithm based on dynamic back tracking along a doubly linked list are proposed.An improved rounding strategy for reducing interpolation errors is also presented.By using the proposed techniques,arbitrary velocity profiles that offer look-ahead feature and have the desired ACC/DEC characteristics for movement of a lot of continuous line blocks can be generated efficiently.Both simulations and experiments showed the productivity was dramatically increased without sacri- fice of accuracy.
基金the CNC Equipment Development for Key Structure Integrated Manufacturing by LAW(No.ZB-ZBYZ-03-11-2190)the Shanghai Aerospace Fund(No.HTJ10-20)
文摘A novel five-axis real-time interpolation algorithm for 3[PP]S-XY hybrid mechanism is proposed in this paper. In the algorithm, the five-axis tool path for controlling this hybrid mechanism is separated into two sub-paths. One sub-path describes the movement of 3[PP]S parallel kinematic mechanism module, and the other one describes the movement of XY platform. A pair of cubic Bezier curves is employed to smooth the corners in those two sub-paths. Based on the homogenous Jacobian matrix of 3[PP]S mechanism, a relationship between the position errors of every driving joint in hybrid mechanism and the position deviation of the tool tip center point at the moving platform is established. This relationship is used to estimate the approximation error for the corners smoothing according to the accuracy requirement of tool tip center in interpolation. Due to the high computational efficiency of this corner smoothing method, it is integrated into the look-ahead module of computer numerical control(CNC) system to perform online tool path smoothing. By performing the speed planning based on a floating window scheme, a jerk limited S-shape speed profile can be generated efficiently. On this basis, a realtime look-ahead scheme, which is comprised of path-smoothing and feedrate scheduling, is developed to acquire a speed profile with smooth acceleration. A monotonic cubic spline is employed for synchronization between those two smoothed sub-paths in tool path interpolation. This interpolation algorithm has been integrated into our own developed CNC system to control a 3PRS-XY experimental instrument(P, R and S standing for prismatic,revolute and spherical, respectively). A club shaped trajectory is adopted to verify the smoothness and efficiency of the five-axis interpolator for hybrid mechanism control.
基金supported by the National Natural Science Foundation of China (10802028)the Major State Basic Research Development Program of China (2010CB832705)the National Science Fund for Distinguished Young Scholars (10725208)
文摘In this article,an effective technique is developed to efficiently obtain the output responses of parameterized structural dynamic problems.This technique is based on the conception of reduced basis method and the usage of linear interpolation principle.The original problem is projected onto the reduced basis space by linear interpolation projection,and subsequently an associated interpolation matrix is generated.To ensure the largest nonsingularity,the interpolation matrix needs to go through a timenode choosing process,which is developed by applying the angle of vector spaces.As a part of this technique,error estimation is recommended for achieving the computational error bound.To ensure the successful performance of this technique,the offline-online computational procedures are conducted in practical engineering.Two numerical examples demonstrate the accuracy and efficiency of the presented method.