期刊文献+
共找到200篇文章
< 1 2 10 >
每页显示 20 50 100
A STUDY ON THE ENSEMBLE FORECAST REAL-TIME CORRECTION METHOD 被引量:4
1
作者 GUO Rong QI Liang-bo +1 位作者 GE Qian-qian WENG Yong-yuan 《Journal of Tropical Meteorology》 SCIE 2018年第1期42-48,共7页
Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determin... Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determined that the short-time forecast effect was better than the original objective mode. By selecting four types of integration schemes after multiple mode path integration for those four objective modes, the forecast effect of the multi-mode path integration is better, on average, than any single model. Moreover, multi-mode ensemble forecasting has obvious advantages during the initial 36 h. 展开更多
关键词 typhoon path real-time correction ensemble forecast track errors
下载PDF
A Novel Hybrid Ensemble Learning Approach for Enhancing Accuracy and Sustainability in Wind Power Forecasting
2
作者 Farhan Ullah Xuexia Zhang +2 位作者 Mansoor Khan Muhammad Abid Abdullah Mohamed 《Computers, Materials & Continua》 SCIE EI 2024年第5期3373-3395,共23页
Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article... Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article presentsa novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts.The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-EraRetrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms usingin-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model,while a temporal convolutional network handles time-series complexities and data gaps. The ensemble-temporalneural network is enhanced by providing different input parameters including training layers, hidden and dropoutlayers along with activation and loss functions. The proposed framework is further analyzed by comparing stateof-the-art forecasting models in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),respectively. The energy efficiency performance indicators showed that the proposed model demonstrates errorreduction percentages of approximately 16.67%, 28.57%, and 81.92% for MAE, and 38.46%, 17.65%, and 90.78%for RMSE for MERRAWind farms 1, 2, and 3, respectively, compared to other existingmethods. These quantitativeresults show the effectiveness of our proposed model with MAE values ranging from 0.0010 to 0.0156 and RMSEvalues ranging from 0.0014 to 0.0174. This work highlights the effectiveness of requirements engineering in windpower forecasting, leading to enhanced forecast accuracy and grid stability, ultimately paving the way for moresustainable energy solutions. 展开更多
关键词 Ensemble learning machine learning real-time data analysis stakeholder analysis temporal convolutional network wind power forecasting
下载PDF
Rolling Generation Dispatch Based on Ultra-short-term Wind Power Forecast
3
作者 Qiushi Xu Changhong Deng 《Energy and Power Engineering》 2013年第4期630-635,共6页
The power systems economic and safety operation considering large-scale wind power penetration are now facing great challenges, which are based on reliable power supply and predictable load demands in the past. A roll... The power systems economic and safety operation considering large-scale wind power penetration are now facing great challenges, which are based on reliable power supply and predictable load demands in the past. A rolling generation dispatch model based on ultra-short-term wind power forecast was proposed. In generation dispatch process, the model rolling correct not only the conventional units power output but also the power from wind farm, simultaneously. Second order Markov chain model was utilized to modify wind power prediction error state (WPPES) and update forecast results of wind power over the remaining dispatch periods. The prime-dual affine scaling interior point method was used to solve the proposed model that taken into account the constraints of multi-periods power balance, unit output adjustment, up spinning reserve and down spinning reserve. 展开更多
关键词 Wind POWER GENERATION POWER System rolling GENERATION DISPATCH Ultra-short-term forecast Markov Chain Model Prime-dual AFFINE Scaling Interior Point Method
下载PDF
Short-Term Precipitation Forecasting Rolling Update Correction Technology Based on Optimal Fusion Correction
4
作者 Meijin Huang Qing Lin +4 位作者 Ning Pan Nengzhu Fan Tao Jiang Qianshan He Lingguang Huang 《Journal of Geoscience and Environment Protection》 2019年第3期145-159,共15页
In order to improve the availability of regional model precipitation forecast, this project intends to use the measured heavy rainfall data of dense automatic stations to carry out historical precipitation in the high... In order to improve the availability of regional model precipitation forecast, this project intends to use the measured heavy rainfall data of dense automatic stations to carry out historical precipitation in the high resolution: the Severe Weather Automatic Nowcast System (SWAN) quantitative precipitation forecast and the High-Resolution Rapid Refresh (HRRR) regional numerical model precipitation forecast in short-term nowcasting aging. Based on the error analysis, the grid fusion technology is used to establish the measured rainfall, HRRR regional model precipitation forecast, and optical flow radar quantitative precipitation forecast (QPF) three-source fusion correction scheme, comprehensively integrate the revised forecasting effect, adjust the fusion correction parameters, establish an optimal correction plan, generate a frozen rolling update revised product based on measured dense data and short-term forecast, and put it into business operation, and perform real-time effect rolling test evaluation on the forecast product. 展开更多
关键词 OPTIMAL FUSION CORRECTION Radar QPF Numerical Model SHORT-TERM Precipitation forecasting rolling Test
下载PDF
A Real-Time Fraud Detection Algorithm Based on Usage Amount Forecast
5
作者 Kun Niu Zhipeng Gao +2 位作者 Kaile Xiao Nanjie Deng Haizhen Jiao 《国际计算机前沿大会会议论文集》 2016年第1期25-26,共2页
Real-time Fraud Detection has always been a challenging task, especially in financial, insurance, and telecom industries. There are mainly three methods, which are rule set, outlier detection and classification to sol... Real-time Fraud Detection has always been a challenging task, especially in financial, insurance, and telecom industries. There are mainly three methods, which are rule set, outlier detection and classification to solve the problem. But those methods have some drawbacks respectively. To overcome these limitations, we propose a new algorithm UAF (Usage Amount Forecast).Firstly, Manhattan distance is used to measure the similarity between fraudulent instances and normal ones. Secondly, UAF gives real-time score which detects the fraud early and reduces as much economic loss as possible. Experiments on various real-world datasets demonstrate the high potential of UAF for processing real-time data and predicting fraudulent users. 展开更多
关键词 real-time FRAUD Detection USAGE AMOUNT forecast TELECOM industry
下载PDF
Real-Time Monitoring and Forecast of Active Population Density Using Mobile Phone Data
6
作者 Qi Li Bin Xu +1 位作者 Yukun Ma Tonglee Chung 《国际计算机前沿大会会议论文集》 2015年第B12期31-33,共3页
Real-time monitoring and forecast of large scale active population density is of great significance as it can warn and prevent possible public safety accident caused by abnormal population aggregation.Active populatio... Real-time monitoring and forecast of large scale active population density is of great significance as it can warn and prevent possible public safety accident caused by abnormal population aggregation.Active population is defined as the number of people with their mobile phone powered on.Recently,an unfortunate deadly stampede occurred in Shanghai on December 31th 2014 causing the death of 39 people.We hope that our research can help avoid similar unfortunate accident from happening.In this paper we propose a method for active population density real-time monitoring and forecasting based on data from mobile network operators.Our method is based solely on mobile network operators existing infrastructure and barely requires extra investment,and mobile devices play a very limited role in the process of population locating.Four series forecasting methods,namely Simple Exponential Smoothing(SES),Double exponential smoothing(DES),Triple exponential smoothing(TES)and Autoregressive integrated moving average(ARIMA)are used in our experiments.Our experimental results suggest that we can achieve good forecast result for 135 min in future. 展开更多
关键词 real-time forecast POPULATION DENSITY PUBLIC safety Mobile PHONE DATA
下载PDF
MODELING OF FERRITE GRAIN GROWTH OF LOW CARBON STEELS DURING HOT ROLLING 被引量:4
7
作者 Y.T. Zhang, D.Z. Li and Y.Y. LiInstitute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016, China Manuscript received 26 December 2001 in revised form 9 February 2002 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第3期267-271,共5页
For most commercial steels the prediction of the final properties depends on accurately calculating the room temperature ferrite grain size. A grain growth model is proposed for low carbon steels Q235B during hot roll... For most commercial steels the prediction of the final properties depends on accurately calculating the room temperature ferrite grain size. A grain growth model is proposed for low carbon steels Q235B during hot rolling. By using this model, the initial ferrite grain size after continuous cooling and ferrite grain growing in coiling procedure can be predicted. In-plant trials were performed in the hot strip mill of Ansteel. The calculated final ferrite grain sizes are in good agreement with the experimental ones. It is helpful both for simulation of microstructure evolution and prediction of mechanical properties. 展开更多
关键词 FERRITE forecasting Grain growth Hot rolling Iron and steel plants Mathematical models Mechanical properties
下载PDF
Construction Simulation and Real-Time Control for High Arch Dam 被引量:6
8
作者 钟登华 任炳昱 吴康新 《Transactions of Tianjin University》 EI CAS 2008年第4期248-253,共6页
A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction ... A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction process was established. By combining dynamic construction simulation with schedule analysis, the process of construction schedule forecasting and analysis based on dynamic simulation was studied. The process of real-time schedule control was constructed and some measures for dynamic adjustment and control of construction schedule were provided. A system developed with the method is utilized in a being constructed hydroelectric project located at the Yellow River in northwest China, which can make the pouring plan of the dam in the next stage (a month, quarter or year) to guide the practical construction. The application result shows that the system provides an effective technical support for the construction and management of the dam. 展开更多
关键词 high arch dam construction dynamic simulation schedule forecasting real-time control
下载PDF
Real-time scheduling strategy for microgrids considering operation interval division of DGs and batteries 被引量:7
9
作者 Chunyang Liu Yinghao Qin Hengxu Zhang 《Global Energy Interconnection》 2020年第5期442-452,共11页
Real-time scheduling as an on-line optimization process must output dispatch results in real time. However, the calculation time required and the economy have a trade-off relationship. In response to a real-time sched... Real-time scheduling as an on-line optimization process must output dispatch results in real time. However, the calculation time required and the economy have a trade-off relationship. In response to a real-time scheduling problem, this paper proposes a real-time scheduling strategy considering the operation interval division of distributed generators(DGs) and batteries in the microgrid. Rolling scheduling models, including day-ahead scheduling and hours-ahead scheduling, are established, where the latter considers the future state-of-charge deviations. For the real-time scheduling, the output powers of the DGs are divided into two intervals based on the ability to track the day-ahead and hours-ahead schedules. The day-ahead and hours-ahead scheduling ensure the economy, whereas the real-time scheduling overcomes the timeconsumption problem. Finally, a grid-connected microgrid example is studied, and the simulation results demonstrate the effectiveness of the proposed strategy in terms of economic and real-time requirements. 展开更多
关键词 MICROGRID real-time scheduling rolling scheduling Interval division
下载PDF
Intelligent decision making optimization of rolling mills through data prediction
10
作者 KONG Wei WANG Quansheng 《Baosteel Technical Research》 CAS 2022年第2期10-16,共7页
Steel rolling mills have complex processes,specifications,and varieties,along with certain process quality fluctuations and complex production events,making production management decisions difficult.With the developme... Steel rolling mills have complex processes,specifications,and varieties,along with certain process quality fluctuations and complex production events,making production management decisions difficult.With the development of industrial big data technology,several industrial event solutions based on data have been proposed.These solutions are supported by predictive data and remarkably improve the production level.Taking a heavy plate production line as the research object,through scientific calculations based on historical big data,this paper establishes an optimization logic for plan arrangement,forecasts the quality through the stable relationship between data and quality,intelligently optimizes the subsequent process flow,improves the production line capacity,and reduces the process bottlenecks. 展开更多
关键词 intelligent decision making big data forecast steel rolling mill
下载PDF
基于LSTM模型的船舶材料成本滚动预测
11
作者 潘燕华 李公卿 王平 《造船技术》 2024年第3期71-77,共7页
船舶建造周期长、材料成本占比大,易受大宗商品价格指数和汇率等多个因素的影响,造成实际完工成本与报价估算存在较大误差的情况。采用灰色关联分析(Grey Correlation Analysis,GCA)方法识别材料成本的影响因素,基于长短期记忆网络(Long... 船舶建造周期长、材料成本占比大,易受大宗商品价格指数和汇率等多个因素的影响,造成实际完工成本与报价估算存在较大误差的情况。采用灰色关联分析(Grey Correlation Analysis,GCA)方法识别材料成本的影响因素,基于长短期记忆网络(Long Short-Term Memory,LSTM)模型构建船舶材料成本滚动预测模型,并使用某造船企业53艘64000 t散货船63个月的材料成本数据和对应的影响因素数据进行试验分析。结果表明,预测数据与实际数据误差在可接受范围内,可证明所选择方法和构建模型的有效性。研究结果对制造过程的成本实时预测和控制具有现实意义。 展开更多
关键词 船舶 材料成本 滚动预测 长短期记忆网络模型 灰色关联分析
下载PDF
基于LSTM算法的冷轧机架振动动态预警分析
12
作者 马志刚 《锻压装备与制造技术》 2024年第2期153-156,共4页
在实际生产阶段冷轧机具有多态性与时变性,需要对轧机振动动态预警进行转换形成包含多变量的时间序列预警。建立了一种基于LSTM算法的冷轧机振动预警模型。研究结果表明:提高步长后模型预警性能获得明显提升,随着步长到达5后,模型表现... 在实际生产阶段冷轧机具有多态性与时变性,需要对轧机振动动态预警进行转换形成包含多变量的时间序列预警。建立了一种基于LSTM算法的冷轧机振动预警模型。研究结果表明:提高步长后模型预警性能获得明显提升,随着步长到达5后,模型表现也逐渐变差,步长为4时,获得了最优预警效果。结合实际振动报警阈值,在预警振动能量值升高至阈值75%时激发形成振动预报,第一卷与第二卷分别提前预报1.6s与3.2s。该研究对控制板材的精度具有很好的指导意义。 展开更多
关键词 轧机振动 长短时记忆循环神经网络 预报 模型
下载PDF
基于Transformer-LSTM网络的轴承寿命预测 被引量:1
13
作者 张帆 姚德臣 +4 位作者 姚圣卓 杨建伟 王琰亮 魏明辉 胡忠硕 《振动与冲击》 EI CSCD 北大核心 2024年第6期320-328,共9页
轴承是旋转机械设备中的重要部件,由于工况、材质、加工方式等原因,轴承寿命时长相差许多。传统的并行或串行神经网络预测方式,对数据集有一定要求。因此,需要一种能够适用于不同数据长短的轴承剩余使用寿命预测网络。为此提出了一种能... 轴承是旋转机械设备中的重要部件,由于工况、材质、加工方式等原因,轴承寿命时长相差许多。传统的并行或串行神经网络预测方式,对数据集有一定要求。因此,需要一种能够适用于不同数据长短的轴承剩余使用寿命预测网络。为此提出了一种能够预测不同寿命时长的Transformer-LSTM串并行神经网络预测模型。通过将Transformer解码层进行重构,并与长短期记忆时序神经网络(long short-term memory,LSTM)网络结构融合,实现轴承寿命数据的串并行预测处理。试验结果表明Transformer-LSTM神经网络能够精准预测长、中、短不同寿命时长的轴承失效时间,具有较强的模型泛化能力,提升轴承寿命预测精度与模型的泛化能力。 展开更多
关键词 滚动轴承 轴承寿命预测 Transformer神经网络 LSTM神经网络 非线性时间序列预测
下载PDF
基于CNN-LSTM的珠江河口台风过程实时滚动修正预报
14
作者 邓志弘 刘丙军 +4 位作者 张卡 胡仕焜 曾慧 张明珠 李丹 《海洋预报》 CSCD 北大核心 2024年第1期94-103,共10页
为改善台风预报精度,基于实时滚动修正预报思路,利用卷积神经网络嵌套长短期记忆神经网络(CNN-LSTM)和误差校正(EC)技术,搭建了珠江河口台风实时预报模型。研究结果表明:“滚动预报”比单次预报有更好的路径和强度预报效果,随着模型滚... 为改善台风预报精度,基于实时滚动修正预报思路,利用卷积神经网络嵌套长短期记忆神经网络(CNN-LSTM)和误差校正(EC)技术,搭建了珠江河口台风实时预报模型。研究结果表明:“滚动预报”比单次预报有更好的路径和强度预报效果,随着模型滚动时间的延长,预报整体精度有逐渐改善的趋势。路径预报结果的均方根误差比单次预报减小了25.67%,强度预报结果的平均绝对误差比单次预报减小了65.04%;考虑误差校正的CNN-LSTM-EC的路径、强度“滚动预报”效果均优于CNN-LSTM,前者的路径预报误差较后者减小了22.57%,强度预报误差减小2.5%。 展开更多
关键词 实时滚动预报 台风 珠江河口 深度学习 误差校正
下载PDF
基于LSTM算法的冷连轧机架振动动态预警
15
作者 张海辉 《锻压装备与制造技术》 2024年第5期144-146,共3页
为了克服传统研究方法只根据工艺反应机制开展理论建模的缺陷,建立一种基于长短期记忆网络(LSTM)算法的冷连轧机架振动预警模型。网络预警结果准确性与效率也受到超参数直接影响,选择验证集均方误差作为目标函数,通过网格搜索方式寻优... 为了克服传统研究方法只根据工艺反应机制开展理论建模的缺陷,建立一种基于长短期记忆网络(LSTM)算法的冷连轧机架振动预警模型。网络预警结果准确性与效率也受到超参数直接影响,选择验证集均方误差作为目标函数,通过网格搜索方式寻优计算获得最佳超参数组合结果,构建最佳振动预警模型。研究结果表明:第一卷在310s形成了剧烈振动,第二卷位于开轧后615s形成了比第一卷更大的峰值,表现为剧烈振动特征。随着报警阈值的降低,第一卷和第二卷的提前报警时间均表现出单调增加的变化规律,符合实际情况。该研究对提高冷连轧机工作稳定性具有很好的实际指导意义。 展开更多
关键词 冷连轧 轧机振动 LSTM神经网络 预报 模型
下载PDF
基于LSTM的溶解氧滚动预报预警平台构建——以珠江三角洲典型河段为例
16
作者 胡艳芳 陈昭婷 +2 位作者 赵长进 李小宝 胡浩锋 《环境保护科学》 CAS 2024年第5期163-169,共7页
溶解氧是衡量水环境质量的综合性指标,也是近几年影响珠三角水环境质量达标的关键因子之一,实现对溶解氧的准确预测并嵌入到环境决策支持系统,对于区域水环境管理工作意义重大。考虑到传统的机理模型计算复杂,需要的数据获取难度大,对... 溶解氧是衡量水环境质量的综合性指标,也是近几年影响珠三角水环境质量达标的关键因子之一,实现对溶解氧的准确预测并嵌入到环境决策支持系统,对于区域水环境管理工作意义重大。考虑到传统的机理模型计算复杂,需要的数据获取难度大,对于大数据时代下智能化的水质预测问题并不适用,因此利用断面自动站连续观测数据构建了长短时记忆网络(LSTM)模型,实现了对珠三角典型河段溶解氧的滚动预测,并按照数据层、应用层和表现层的规范设计研发了珠江三角洲典型河段溶解氧滚动预报预警平台。该平台能够直观、实时、动态展示珠三角溶解氧时空变化,并基于溶解氧预测结果进行分级预警,将为区域水环境管理提供科学有效的技术支撑。 展开更多
关键词 环境决策支持系统 溶解氧 滚动预报 LSTM 珠三角
下载PDF
基于动态权重优化的风电机组齿轮箱轴承温度预测模型
17
作者 吴九牛 翟广宇 +2 位作者 李德仓 高德成 蒋维栋 《轴承》 北大核心 2024年第9期100-107,共8页
为准确预测风电机组齿轮箱轴承的温度状态,结合灰色预测GM(1,N)模型、BP神经网络模型和支持向量回归模型,提出了一种动态权重优化的组合预测模型。通过对3种预测模型的理论分析选择了各自合理的模型结构,并用粒子群算法优化模型参数;预... 为准确预测风电机组齿轮箱轴承的温度状态,结合灰色预测GM(1,N)模型、BP神经网络模型和支持向量回归模型,提出了一种动态权重优化的组合预测模型。通过对3种预测模型的理论分析选择了各自合理的模型结构,并用粒子群算法优化模型参数;预处理齿轮箱轴承温度的原始数据后用指数平滑法确定各单一模型的动态权重系数,建立齿轮箱轴承温度的组合模型;通过滑动窗口法统计分析齿轮箱轴承预测温度的残差,判断齿轮箱轴承的运行状态。研究结果表明:组合模型的各项评价指标均优于单一预测模型,决定系数为0.9772,预测效果更加稳定准确,能够及时监测齿轮箱轴承温度的变化情况。 展开更多
关键词 滚动轴承 风力发电机组 温度 预测 灰色系统 神经网络 支持向量回归预测法
下载PDF
考虑误差修正的MC-BP短期电力负荷预测方法
18
作者 安天瑜 刘思铭 +2 位作者 刘艳 张连超 许君德 《沈阳工程学院学报(自然科学版)》 2024年第3期66-72,共7页
准确的短期负荷预测是电网日常调度的重要依据。针对目前短期电力负荷预测精度问题,提出了一种考虑误差滚动修正的MC-BP短期电力负荷预测方法。首先,建立了基于逐步试错法的BP负荷预测模型,分析了预测误差的概率密度分布,构建了基于蒙... 准确的短期负荷预测是电网日常调度的重要依据。针对目前短期电力负荷预测精度问题,提出了一种考虑误差滚动修正的MC-BP短期电力负荷预测方法。首先,建立了基于逐步试错法的BP负荷预测模型,分析了预测误差的概率密度分布,构建了基于蒙特卡洛(Monte Carlo,MC)的日负荷误差滚动修正策略;其次,选用了某地区2015-2019年的负荷数据进行预测,比较了CNN-BiLSTM、LSTM和BP模型的预测结果,3种预测模型的测试集NRMSE分别为5.97%、6.49%和5.5%;最后,对比了BP和LSTM预测方法修正误差、线性回归方法修正误差和误差滚动修正方法的误差修正策略的修正效果,对后一天的误差修正NRMSE的相对变化率分别为-26.68%、-28.81%、-43.90%、-88.64%。预测结果表明:所提出的考虑误差滚动修正的MC-BP短期电力负荷预测方法具有良好的预测效果。 展开更多
关键词 BP神经网络 蒙特卡洛 电力负荷预测 误差修正 滚动修正
下载PDF
异型截面铝型材滚弯过程回弹机理及预报模型研究
19
作者 杨博 赵晓辉 +2 位作者 王大号 丁锋 陈建峰 《重型机械》 2024年第4期67-71,共5页
异型截面铝型材原料因其轻质、高强、抗腐等特点,作为大型结构件在列车车头得到广泛应用。但由于该类型材具有截面复杂、壁体多样、通长镂空等特征,在滚弯加工后不可避免地存在回弹现象。充分结合滚弯装备的结构与工艺特点,对滚弯过程... 异型截面铝型材原料因其轻质、高强、抗腐等特点,作为大型结构件在列车车头得到广泛应用。但由于该类型材具有截面复杂、壁体多样、通长镂空等特征,在滚弯加工后不可避免地存在回弹现象。充分结合滚弯装备的结构与工艺特点,对滚弯过程异型截面铝型材进行了受力分析,揭示了卸料后铝型材的回弹机理。提出了异型截面铝型材等效截面系数的计算方法,结合中性层半径与材料属性及内应力的内在关系,建立了异型截面铝型材滚弯过程回弹预报模型,实现了滚弯回弹半径与回弹量的定量预报,并在现场取得了显著的应用效果,具有进一步推广应用的价值。 展开更多
关键词 异型截面铝型材 滚弯装备 回弹机理 预报模型
下载PDF
Rainfall-runoff simulation and flood forecasting for Huaihe Basin 被引量:5
20
作者 Li Zhijia Wang Lili +2 位作者 Bao Hongjun Song Yu Yu Zhongbo 《Water Science and Engineering》 EI CAS 2008年第3期24-35,共12页
The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the su... The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the surface of Hongze Lake. The influence of reservoirs and gates on flood forecasting was considered in a practical and simple way. With a one-day time step, the linear and non-linear Muskingum method was used for channel flood routing, and the least-square regression model was used for real-time correction in flood forecasting. Representative historical data were collected for the model calibration. The hydrological model parameters for each sub-basin were calibrated individually, so the parameters of the Xin'anjiang model were different for different sub-basins. This flood forecasting system was used in the real-time simulation of the large flood in 2005 and the results are satisfactory when compared with measured data from the flood. 展开更多
关键词 rainfall-runoff simulation Xin'anjiang model Muskingum method channel routing real-time forecasting flood diversion and reta.rding area
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部