Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determin...Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determined that the short-time forecast effect was better than the original objective mode. By selecting four types of integration schemes after multiple mode path integration for those four objective modes, the forecast effect of the multi-mode path integration is better, on average, than any single model. Moreover, multi-mode ensemble forecasting has obvious advantages during the initial 36 h.展开更多
Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article...Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article presentsa novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts.The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-EraRetrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms usingin-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model,while a temporal convolutional network handles time-series complexities and data gaps. The ensemble-temporalneural network is enhanced by providing different input parameters including training layers, hidden and dropoutlayers along with activation and loss functions. The proposed framework is further analyzed by comparing stateof-the-art forecasting models in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),respectively. The energy efficiency performance indicators showed that the proposed model demonstrates errorreduction percentages of approximately 16.67%, 28.57%, and 81.92% for MAE, and 38.46%, 17.65%, and 90.78%for RMSE for MERRAWind farms 1, 2, and 3, respectively, compared to other existingmethods. These quantitativeresults show the effectiveness of our proposed model with MAE values ranging from 0.0010 to 0.0156 and RMSEvalues ranging from 0.0014 to 0.0174. This work highlights the effectiveness of requirements engineering in windpower forecasting, leading to enhanced forecast accuracy and grid stability, ultimately paving the way for moresustainable energy solutions.展开更多
The power systems economic and safety operation considering large-scale wind power penetration are now facing great challenges, which are based on reliable power supply and predictable load demands in the past. A roll...The power systems economic and safety operation considering large-scale wind power penetration are now facing great challenges, which are based on reliable power supply and predictable load demands in the past. A rolling generation dispatch model based on ultra-short-term wind power forecast was proposed. In generation dispatch process, the model rolling correct not only the conventional units power output but also the power from wind farm, simultaneously. Second order Markov chain model was utilized to modify wind power prediction error state (WPPES) and update forecast results of wind power over the remaining dispatch periods. The prime-dual affine scaling interior point method was used to solve the proposed model that taken into account the constraints of multi-periods power balance, unit output adjustment, up spinning reserve and down spinning reserve.展开更多
In order to improve the availability of regional model precipitation forecast, this project intends to use the measured heavy rainfall data of dense automatic stations to carry out historical precipitation in the high...In order to improve the availability of regional model precipitation forecast, this project intends to use the measured heavy rainfall data of dense automatic stations to carry out historical precipitation in the high resolution: the Severe Weather Automatic Nowcast System (SWAN) quantitative precipitation forecast and the High-Resolution Rapid Refresh (HRRR) regional numerical model precipitation forecast in short-term nowcasting aging. Based on the error analysis, the grid fusion technology is used to establish the measured rainfall, HRRR regional model precipitation forecast, and optical flow radar quantitative precipitation forecast (QPF) three-source fusion correction scheme, comprehensively integrate the revised forecasting effect, adjust the fusion correction parameters, establish an optimal correction plan, generate a frozen rolling update revised product based on measured dense data and short-term forecast, and put it into business operation, and perform real-time effect rolling test evaluation on the forecast product.展开更多
Real-time Fraud Detection has always been a challenging task, especially in financial, insurance, and telecom industries. There are mainly three methods, which are rule set, outlier detection and classification to sol...Real-time Fraud Detection has always been a challenging task, especially in financial, insurance, and telecom industries. There are mainly three methods, which are rule set, outlier detection and classification to solve the problem. But those methods have some drawbacks respectively. To overcome these limitations, we propose a new algorithm UAF (Usage Amount Forecast).Firstly, Manhattan distance is used to measure the similarity between fraudulent instances and normal ones. Secondly, UAF gives real-time score which detects the fraud early and reduces as much economic loss as possible. Experiments on various real-world datasets demonstrate the high potential of UAF for processing real-time data and predicting fraudulent users.展开更多
Real-time monitoring and forecast of large scale active population density is of great significance as it can warn and prevent possible public safety accident caused by abnormal population aggregation.Active populatio...Real-time monitoring and forecast of large scale active population density is of great significance as it can warn and prevent possible public safety accident caused by abnormal population aggregation.Active population is defined as the number of people with their mobile phone powered on.Recently,an unfortunate deadly stampede occurred in Shanghai on December 31th 2014 causing the death of 39 people.We hope that our research can help avoid similar unfortunate accident from happening.In this paper we propose a method for active population density real-time monitoring and forecasting based on data from mobile network operators.Our method is based solely on mobile network operators existing infrastructure and barely requires extra investment,and mobile devices play a very limited role in the process of population locating.Four series forecasting methods,namely Simple Exponential Smoothing(SES),Double exponential smoothing(DES),Triple exponential smoothing(TES)and Autoregressive integrated moving average(ARIMA)are used in our experiments.Our experimental results suggest that we can achieve good forecast result for 135 min in future.展开更多
For most commercial steels the prediction of the final properties depends on accurately calculating the room temperature ferrite grain size. A grain growth model is proposed for low carbon steels Q235B during hot roll...For most commercial steels the prediction of the final properties depends on accurately calculating the room temperature ferrite grain size. A grain growth model is proposed for low carbon steels Q235B during hot rolling. By using this model, the initial ferrite grain size after continuous cooling and ferrite grain growing in coiling procedure can be predicted. In-plant trials were performed in the hot strip mill of Ansteel. The calculated final ferrite grain sizes are in good agreement with the experimental ones. It is helpful both for simulation of microstructure evolution and prediction of mechanical properties.展开更多
A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction ...A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction process was established. By combining dynamic construction simulation with schedule analysis, the process of construction schedule forecasting and analysis based on dynamic simulation was studied. The process of real-time schedule control was constructed and some measures for dynamic adjustment and control of construction schedule were provided. A system developed with the method is utilized in a being constructed hydroelectric project located at the Yellow River in northwest China, which can make the pouring plan of the dam in the next stage (a month, quarter or year) to guide the practical construction. The application result shows that the system provides an effective technical support for the construction and management of the dam.展开更多
Real-time scheduling as an on-line optimization process must output dispatch results in real time. However, the calculation time required and the economy have a trade-off relationship. In response to a real-time sched...Real-time scheduling as an on-line optimization process must output dispatch results in real time. However, the calculation time required and the economy have a trade-off relationship. In response to a real-time scheduling problem, this paper proposes a real-time scheduling strategy considering the operation interval division of distributed generators(DGs) and batteries in the microgrid. Rolling scheduling models, including day-ahead scheduling and hours-ahead scheduling, are established, where the latter considers the future state-of-charge deviations. For the real-time scheduling, the output powers of the DGs are divided into two intervals based on the ability to track the day-ahead and hours-ahead schedules. The day-ahead and hours-ahead scheduling ensure the economy, whereas the real-time scheduling overcomes the timeconsumption problem. Finally, a grid-connected microgrid example is studied, and the simulation results demonstrate the effectiveness of the proposed strategy in terms of economic and real-time requirements.展开更多
Steel rolling mills have complex processes,specifications,and varieties,along with certain process quality fluctuations and complex production events,making production management decisions difficult.With the developme...Steel rolling mills have complex processes,specifications,and varieties,along with certain process quality fluctuations and complex production events,making production management decisions difficult.With the development of industrial big data technology,several industrial event solutions based on data have been proposed.These solutions are supported by predictive data and remarkably improve the production level.Taking a heavy plate production line as the research object,through scientific calculations based on historical big data,this paper establishes an optimization logic for plan arrangement,forecasts the quality through the stable relationship between data and quality,intelligently optimizes the subsequent process flow,improves the production line capacity,and reduces the process bottlenecks.展开更多
The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the su...The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the surface of Hongze Lake. The influence of reservoirs and gates on flood forecasting was considered in a practical and simple way. With a one-day time step, the linear and non-linear Muskingum method was used for channel flood routing, and the least-square regression model was used for real-time correction in flood forecasting. Representative historical data were collected for the model calibration. The hydrological model parameters for each sub-basin were calibrated individually, so the parameters of the Xin'anjiang model were different for different sub-basins. This flood forecasting system was used in the real-time simulation of the large flood in 2005 and the results are satisfactory when compared with measured data from the flood.展开更多
基金National Natural Science Foundation of China(41475060,41275067,41405060)
文摘Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determined that the short-time forecast effect was better than the original objective mode. By selecting four types of integration schemes after multiple mode path integration for those four objective modes, the forecast effect of the multi-mode path integration is better, on average, than any single model. Moreover, multi-mode ensemble forecasting has obvious advantages during the initial 36 h.
文摘Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article presentsa novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts.The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-EraRetrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms usingin-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model,while a temporal convolutional network handles time-series complexities and data gaps. The ensemble-temporalneural network is enhanced by providing different input parameters including training layers, hidden and dropoutlayers along with activation and loss functions. The proposed framework is further analyzed by comparing stateof-the-art forecasting models in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),respectively. The energy efficiency performance indicators showed that the proposed model demonstrates errorreduction percentages of approximately 16.67%, 28.57%, and 81.92% for MAE, and 38.46%, 17.65%, and 90.78%for RMSE for MERRAWind farms 1, 2, and 3, respectively, compared to other existingmethods. These quantitativeresults show the effectiveness of our proposed model with MAE values ranging from 0.0010 to 0.0156 and RMSEvalues ranging from 0.0014 to 0.0174. This work highlights the effectiveness of requirements engineering in windpower forecasting, leading to enhanced forecast accuracy and grid stability, ultimately paving the way for moresustainable energy solutions.
文摘The power systems economic and safety operation considering large-scale wind power penetration are now facing great challenges, which are based on reliable power supply and predictable load demands in the past. A rolling generation dispatch model based on ultra-short-term wind power forecast was proposed. In generation dispatch process, the model rolling correct not only the conventional units power output but also the power from wind farm, simultaneously. Second order Markov chain model was utilized to modify wind power prediction error state (WPPES) and update forecast results of wind power over the remaining dispatch periods. The prime-dual affine scaling interior point method was used to solve the proposed model that taken into account the constraints of multi-periods power balance, unit output adjustment, up spinning reserve and down spinning reserve.
文摘In order to improve the availability of regional model precipitation forecast, this project intends to use the measured heavy rainfall data of dense automatic stations to carry out historical precipitation in the high resolution: the Severe Weather Automatic Nowcast System (SWAN) quantitative precipitation forecast and the High-Resolution Rapid Refresh (HRRR) regional numerical model precipitation forecast in short-term nowcasting aging. Based on the error analysis, the grid fusion technology is used to establish the measured rainfall, HRRR regional model precipitation forecast, and optical flow radar quantitative precipitation forecast (QPF) three-source fusion correction scheme, comprehensively integrate the revised forecasting effect, adjust the fusion correction parameters, establish an optimal correction plan, generate a frozen rolling update revised product based on measured dense data and short-term forecast, and put it into business operation, and perform real-time effect rolling test evaluation on the forecast product.
基金This paper is supported by the National Natural Science Foundation of China (61272515), and National Science & Technology Pillar Program (2015BAH03F02).
文摘Real-time Fraud Detection has always been a challenging task, especially in financial, insurance, and telecom industries. There are mainly three methods, which are rule set, outlier detection and classification to solve the problem. But those methods have some drawbacks respectively. To overcome these limitations, we propose a new algorithm UAF (Usage Amount Forecast).Firstly, Manhattan distance is used to measure the similarity between fraudulent instances and normal ones. Secondly, UAF gives real-time score which detects the fraud early and reduces as much economic loss as possible. Experiments on various real-world datasets demonstrate the high potential of UAF for processing real-time data and predicting fraudulent users.
文摘Real-time monitoring and forecast of large scale active population density is of great significance as it can warn and prevent possible public safety accident caused by abnormal population aggregation.Active population is defined as the number of people with their mobile phone powered on.Recently,an unfortunate deadly stampede occurred in Shanghai on December 31th 2014 causing the death of 39 people.We hope that our research can help avoid similar unfortunate accident from happening.In this paper we propose a method for active population density real-time monitoring and forecasting based on data from mobile network operators.Our method is based solely on mobile network operators existing infrastructure and barely requires extra investment,and mobile devices play a very limited role in the process of population locating.Four series forecasting methods,namely Simple Exponential Smoothing(SES),Double exponential smoothing(DES),Triple exponential smoothing(TES)and Autoregressive integrated moving average(ARIMA)are used in our experiments.Our experimental results suggest that we can achieve good forecast result for 135 min in future.
基金financially supported by the National Key Basic Research and Development Programme of China (Grant No. G1998061512).
文摘For most commercial steels the prediction of the final properties depends on accurately calculating the room temperature ferrite grain size. A grain growth model is proposed for low carbon steels Q235B during hot rolling. By using this model, the initial ferrite grain size after continuous cooling and ferrite grain growing in coiling procedure can be predicted. In-plant trials were performed in the hot strip mill of Ansteel. The calculated final ferrite grain sizes are in good agreement with the experimental ones. It is helpful both for simulation of microstructure evolution and prediction of mechanical properties.
基金National Natural Science Foundation of China(No.50539120)National Basic Research Program of China("973"Program,No. 2007 CB714101)+1 种基金National Science Fund for Distinguished Young Scholars of China(No.50525927)National Natural Science Founda-tion of China(No.50579045)
文摘A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction process was established. By combining dynamic construction simulation with schedule analysis, the process of construction schedule forecasting and analysis based on dynamic simulation was studied. The process of real-time schedule control was constructed and some measures for dynamic adjustment and control of construction schedule were provided. A system developed with the method is utilized in a being constructed hydroelectric project located at the Yellow River in northwest China, which can make the pouring plan of the dam in the next stage (a month, quarter or year) to guide the practical construction. The application result shows that the system provides an effective technical support for the construction and management of the dam.
基金supported by the National Key R&D Program of China (2018YFA0702200)the Fundamental Research Funds of Shandong University。
文摘Real-time scheduling as an on-line optimization process must output dispatch results in real time. However, the calculation time required and the economy have a trade-off relationship. In response to a real-time scheduling problem, this paper proposes a real-time scheduling strategy considering the operation interval division of distributed generators(DGs) and batteries in the microgrid. Rolling scheduling models, including day-ahead scheduling and hours-ahead scheduling, are established, where the latter considers the future state-of-charge deviations. For the real-time scheduling, the output powers of the DGs are divided into two intervals based on the ability to track the day-ahead and hours-ahead schedules. The day-ahead and hours-ahead scheduling ensure the economy, whereas the real-time scheduling overcomes the timeconsumption problem. Finally, a grid-connected microgrid example is studied, and the simulation results demonstrate the effectiveness of the proposed strategy in terms of economic and real-time requirements.
文摘Steel rolling mills have complex processes,specifications,and varieties,along with certain process quality fluctuations and complex production events,making production management decisions difficult.With the development of industrial big data technology,several industrial event solutions based on data have been proposed.These solutions are supported by predictive data and remarkably improve the production level.Taking a heavy plate production line as the research object,through scientific calculations based on historical big data,this paper establishes an optimization logic for plan arrangement,forecasts the quality through the stable relationship between data and quality,intelligently optimizes the subsequent process flow,improves the production line capacity,and reduces the process bottlenecks.
基金supported by the National Natural Science Foundation of China (Grant No. 50479017)the Program for Changjiang Scholars and Innovative Research Teams in Universities (Grant No. IRT071)
文摘The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the surface of Hongze Lake. The influence of reservoirs and gates on flood forecasting was considered in a practical and simple way. With a one-day time step, the linear and non-linear Muskingum method was used for channel flood routing, and the least-square regression model was used for real-time correction in flood forecasting. Representative historical data were collected for the model calibration. The hydrological model parameters for each sub-basin were calibrated individually, so the parameters of the Xin'anjiang model were different for different sub-basins. This flood forecasting system was used in the real-time simulation of the large flood in 2005 and the results are satisfactory when compared with measured data from the flood.