The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’perfo...The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’performance.Aiming at this goal,a method achieved by determining the optimal calculation interval and accelerating adjustment stage is proposed in this paper.The determinants of the CTS’s calculation interval(characteristics of the clock ensemble,the measurement noise,the time and frequency synchronization system’s noise and the auxiliary output generator noise floor)are studied and the optimal calculation interval is obtained.We also investigate the effect of ensemble algorithm’s initial parameters on the CTS’s adjustment stage.A strategy to get the reasonable initial parameters of ensemble algorithm is designed.The results show that the adjustment stage can be finished rapidly or even can be shorten to zero with reasonable initial parameters.On this basis,we experimentally generate a distributed CTS with a calculation interval of 500 s and its stability outperforms those of the member clocks when the averaging time is longer than1700 s.The experimental result proves that the CTS’s real-time performance is significantly improved.展开更多
Due to their significant correlation and redundancy,conventional block cipher cryptosystems are not efficient in encryptingmultimedia data.Streamciphers based onCellularAutomata(CA)can provide amore effective solution...Due to their significant correlation and redundancy,conventional block cipher cryptosystems are not efficient in encryptingmultimedia data.Streamciphers based onCellularAutomata(CA)can provide amore effective solution.The CA have recently gained recognition as a robust cryptographic primitive,being used as pseudorandom number generators in hash functions,block ciphers and stream ciphers.CA have the ability to perform parallel transformations,resulting in high throughput performance.Additionally,they exhibit a natural tendency to resist fault attacks.Few stream cipher schemes based on CA have been proposed in the literature.Though,their encryption/decryption throughput is relatively low,which makes them unsuitable formultimedia communication.Trivium and Grain are efficient stream ciphers that were selected as finalists in the eSTREAM project,but they have proven to be vulnerable to differential fault attacks.This work introduces a novel and scalable stream cipher named CeTrivium,whose design is based on CA.CeTrivium is a 5-neighborhood CA-based streamcipher inspired by the designs of Trivium and Grain.It is constructed using three building blocks:the Trivium(Tr)block,the Nonlinear-CA(NCA)block,and the Nonlinear Mixing(NM)block.The NCA block is a 64-bit nonlinear hybrid 5-neighborhood CA,while the Tr block has the same structure as the Trivium stream cipher.The NM block is a nonlinear,balanced,and reversible Boolean function that mixes the outputs of the Tr and NCA blocks to produce a keystream.Cryptanalysis of CeTrivium has indicated that it can resist various attacks,including correlation,algebraic,fault,cube,Meier and Staffelbach,and side channel attacks.Moreover,the scheme is evaluated using histogramand spectrogramanalysis,aswell as several differentmeasurements,including the correlation coefficient,number of samples change rate,signal-to-noise ratio,entropy,and peak signal-to-noise ratio.The performance of CeTrivium is evaluated and compared with other state-of-the-art techniques.CeTrivium outperforms them in terms of encryption throughput while maintaining high security.CeTrivium has high encryption and decryption speeds,is scalable,and resists various attacks,making it suitable for multimedia communication.展开更多
In the era of Big Data, typical architecture of distributed real-time stream processing systems is the combination of Flume, Kafka, and Storm. As a kind of distributed message system, Kafka has the characteristics of ...In the era of Big Data, typical architecture of distributed real-time stream processing systems is the combination of Flume, Kafka, and Storm. As a kind of distributed message system, Kafka has the characteristics of horizontal scalability and high throughput, which is manly deployed in many areas in order to address the problem of speed mismatch between message producers and consumers. When using Kafka, we need to quickly receive data sent by producers. In addition, we need to send data to consumers quickly. Therefore, the performance of Kafka is of critical importance to the performance of the whole stream processing system. In this paper, we propose the improved design of real-time stream processing systems, and focus on improving the Kafka's data loading process.We use Kafka cat to transfer data from the source to Kafka topic directly, which can reduce the network transmission. We also utilize the memory file system to accelerate the process of data loading, which can address the bottleneck and performance problems caused by disk I/O. Extensive experiments are conducted to evaluate the performance, which show the superiority of our improved design.展开更多
With the continual growth of the variety and complexity of network crime means, the traditional packet feature matching cannot detect all kinds of intrusion behaviors completely. It is urgent to reassemble network str...With the continual growth of the variety and complexity of network crime means, the traditional packet feature matching cannot detect all kinds of intrusion behaviors completely. It is urgent to reassemble network stream to perform packet processing at a semantic level above the network layer. This paper presents an efficient TCP stream reassembly mechanism for real-time processing of high-speed network traffic. By analyzing the characteristics of network stream in high-speed network and TCP connection establishment process, several polices for designing the reassembly mechanism are built. Then, the reassembly implementation is elaborated in accordance with the policies. Finally, the reassembly mechanism is compared with the traditional reassembly mechanism by the network traffic captured in a typical gigabit gateway. Experiment results illustrate that the reassembly mechanism is efficient and can satisfy the real-time property requirement of traffic analysis system in high-speed network.展开更多
In recent years,real-time video streaming has grown in popularity.The growing popularity of the Internet of Things(IoT)and other wireless heterogeneous networks mandates that network resources be carefully apportioned...In recent years,real-time video streaming has grown in popularity.The growing popularity of the Internet of Things(IoT)and other wireless heterogeneous networks mandates that network resources be carefully apportioned among versatile users in order to achieve the best Quality of Experience(QoE)and performance objectives.Most researchers focused on Forward Error Correction(FEC)techniques when attempting to strike a balance between QoE and performance.However,as network capacity increases,the performance degrades,impacting the live visual experience.Recently,Deep Learning(DL)algorithms have been successfully integrated with FEC to stream videos across multiple heterogeneous networks.But these algorithms need to be changed to make the experience better without sacrificing packet loss and delay time.To address the previous challenge,this paper proposes a novel intelligent algorithm that streams video in multi-home heterogeneous networks based on network-centric characteristics.The proposed framework contains modules such as Intelligent Content Extraction Module(ICEM),Channel Status Monitor(CSM),and Adaptive FEC(AFEC).This framework adopts the Cognitive Learning-based Scheduling(CLS)Module,which works on the deep Reinforced Gated Recurrent Networks(RGRN)principle and embeds them along with the FEC to achieve better performances.The complete framework was developed using the Objective Modular Network Testbed in C++(OMNET++),Internet networking(INET),and Python 3.10,with Keras as the front end and Tensorflow 2.10 as the back end.With extensive experimentation,the proposed model outperforms the other existing intelligentmodels in terms of improving the QoE,minimizing the End-to-End Delay(EED),and maintaining the highest accuracy(98%)and a lower Root Mean Square Error(RMSE)value of 0.001.展开更多
This paper focuses on the time efficiency for machine vision and intelligent photogrammetry, especially high accuracy on-board real-time cloud detection method. With the development of technology, the data acquisition...This paper focuses on the time efficiency for machine vision and intelligent photogrammetry, especially high accuracy on-board real-time cloud detection method. With the development of technology, the data acquisition ability is growing continuously and the volume of raw data is increasing explosively. Meanwhile, because of the higher requirement of data accuracy, the computation load is also becoming heavier. This situation makes time efficiency extremely important. Moreover, the cloud cover rate of optical satellite imagery is up to approximately 50%, which is seriously restricting the applications of on-board intelligent photogrammetry services. To meet the on-board cloud detection requirements and offer valid input data to subsequent processing, this paper presents a stream-computing of high accuracy on-board real-time cloud detection solution which follows the “bottom-up” understanding strategy of machine vision and uses multiple embedded GPU with significant potential to be applied on-board. Without external memory, the data parallel pipeline system based on multiple processing modules of this solution could afford the “stream-in, processing, stream-out” real-time stream computing. In experiments, images of GF-2 satellite are used to validate the accuracy and performance of this approach, and the experimental results show that this solution could not only bring up cloud detection accuracy, but also match the on-board real-time processing requirements.展开更多
Multi-channel can be used to provide higher transmission ability to the bandwidth-intensive and delay-sensitive real-time streams. However, traditional channel capacity theories and coding schemes are seldom designed ...Multi-channel can be used to provide higher transmission ability to the bandwidth-intensive and delay-sensitive real-time streams. However, traditional channel capacity theories and coding schemes are seldom designed for the real-time streams with strict delay constraint, especially in multi-channel context. This paper considers a real-time stream system, where real-time messages with different importance should be transmitted through several packet erasure channels, and be decoded by the receiver within a fixed delay. Based on window erasure channels and i.i.d.(identically and independently distributed) erasure channels, we derive the Multi-channel Real-time Stream Transmission(MRST) capacity models for Symmetric Real-time(SR) streams and Asymmetric Real-time(AR) streams respectively. Moreover, for window erasures, a Maximum Equilibrium Intra-session Code(MEIC) is presented for SR and AR streams, and is shown able to asymptotically achieve the theoretical MRST capacity. For i.i.d. erasures, we propose an Adaptive Maximum Equilibrium Intra-session Code(AMEIC), and then prove AMEIC can closely approach the MRST transmission capacity. Finally, the performances of the proposed codes are verified by simulations.展开更多
In the context of current climate change, an abnormality of flooding is a common form of disaster in Vietnam. Hanh Stream reservoir has occurred great flood in 1986, 2010. In the future, the risk of flooding is possib...In the context of current climate change, an abnormality of flooding is a common form of disaster in Vietnam. Hanh Stream reservoir has occurred great flood in 1986, 2010. In the future, the risk of flooding is possible to happen again. In view of management of the risk of natural disasters: large flooding situation downstream is one of the most dangerous risks for the reservoir. Due to downstream of Hanh Stream reservoir is a narrow coastal plains, quick infrastructure development, especially interwoven road and railway systems, so that flood drainage ability will be affected greatly. The consciousness of risks that may be occurred in the future in order to propose preventive measures and proactive response to minimize damages always is the requirement for all projects. The hydrodynamic calculation, flooding maps, emergency plan to prevent flooding downstream of Hanh Stream reservoir is also needed. The article is raised the issue of requirements to calculate coastal narrow delta strip flooding in the Central of Vietnam when impacted by the upstream reservoir of flood discharge in terms of extreme heavy rain and flooding and presented computational methods of Mike software package for case flooded plain of Cam Ranh Bay in downstream reservoirs of Hanh Stream, Khanh Hoa Province, Vietnam.展开更多
A 2-dimensional global free surface diagnostic model, combined with dynamic calculation, is used to investigate the world ocean circulation; the model has a horizontal resolution of 1/4°×1/4°. The simul...A 2-dimensional global free surface diagnostic model, combined with dynamic calculation, is used to investigate the world ocean circulation; the model has a horizontal resolution of 1/4°×1/4°. The simulated results agree well with the results of other modesl and observations. The distribution of Stream Function suggests that the main circulation systems in the wodd ocean have been represented, including oceanic currents strengthened in the oceanic western. Be close to the observed results, the net mass transport of the Kuroshio axes is estimated about 54Sv; The distribution of the horizontal circulation in each layer shows that the main circulation systems in the world ocean are well simulated, for example, the Kuroshio and the Antarctic Circumpolar Current can go down to the bottom layer, but the Gulf Stream cannot, and its direction reverses at the depths of 1000 to 2 000 m.展开更多
With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation method...With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation methods very attractive. In this paper, we propose a two-phase rate adaptation strategy to improve users' real-time video Qo E. First, to measure and assess video Qo E, we provide a continuous Qo E prediction engine modeled by RNN recurrent neural network. Different from traditional Qo E models which consider the Qo E-aware factors separately or incompletely, our RNN-Qo E model accounts for three descriptive factors(video quality, rebuffering, and rate change) and reflects the impact of cognitive memory and recency. Besides, the video playing is separated into the initial startup phase and the steady playback phase, and we takes different optimization goals for each phase: the former aims at shortening the startup delay while the latter ameliorates the video quality and the rebufferings. Simulation results have shown that RNN-Qo E can follow the subjective Qo E quite well, and the proposed strategy can effectively reduce the occurrence of rebufferings caused by the mismatch between the requested video rates and the fluctuated throughput and attains standout performance on real-time Qo E compared with classical rate adaption methods.展开更多
Nowadays mobile streaming service through cell phone is becoming the highlight of new value-added mobile services. Based on the present CDMAlx wireless data network and Binary Runtime Environment for Wireless (BREW)...Nowadays mobile streaming service through cell phone is becoming the highlight of new value-added mobile services. Based on the present CDMAlx wireless data network and Binary Runtime Environment for Wireless (BREW) platform, adopting compression technologies of H.264 and QCP, a set of streaming media players are designed and implemented, and the principle, structure, key technologies and performance analysis of this system are introduced. This player works well in practice.展开更多
360 video streaming services over the network are becoming popular. In particular, it is easy to experience 360 video through the already popular smartphone. However, due to the nature of 360 video, it is difficult to...360 video streaming services over the network are becoming popular. In particular, it is easy to experience 360 video through the already popular smartphone. However, due to the nature of 360 video, it is difficult to provide stable streaming service in general network environment because the size of data to send is larger than that of conventional video. Also, the real user's viewing area is very small compared to the sending amount. In this paper, we propose a system that can provide high quality 360 video streaming services to the users more efficiently in the cloud. In particular, we propose a streaming system focused on using a head mount display (HMD).展开更多
The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal ac...The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal activity on the network.To reduce these losses,a new fraud detection approach is required.Telecom fraud detection involves identifying a small number of fraudulent calls from a vast amount of call traffic.Developing an effective strategy to combat fraud has become challenging.Although much effort has been made to detect fraud,most existing methods are designed for batch processing,not real-time detection.To solve this problem,we propose an online fraud detection model using a Neural Factorization Autoencoder(NFA),which analyzes customer calling patterns to detect fraudulent calls.The model employs Neural Factorization Machines(NFM)and an Autoencoder(AE)to model calling patterns and a memory module to adapt to changing customer behaviour.We evaluate our approach on a large dataset of real-world call detail records and compare it with several state-of-the-art methods.Our results show that our approach outperforms the baselines,with an AUC of 91.06%,a TPR of 91.89%,an FPR of 14.76%,and an F1-score of 95.45%.These results demonstrate the effectiveness of our approach in detecting fraud in real-time and suggest that it can be a valuable tool for preventing fraud in telecommunications networks.展开更多
Real-time video streaming using ultra-wideband(UWB) technology is experimentally demonstrated along long-reach passive optical networks(LR-PONs) with different wired and wireless reaches. Experimental tests using exte...Real-time video streaming using ultra-wideband(UWB) technology is experimentally demonstrated along long-reach passive optical networks(LR-PONs) with different wired and wireless reaches. Experimental tests using external and direct modulation with UWB wireless radiation in the 10- and 60-GHz bands are performed. An ultra-bendable fiber is also considered for a last-mile distribution. The video quality at the output of the optical fiber infrastructure of the LR-PON is assessed using the error vector magnitude(EVM), and the link quality indicator(LQI) is used as a figure of merit after wireless radiation. An EVM below –17 dB is achieved for both externally and directly modulated LR-PONs comprising up to 125 km of optical fiber. EVM improvement is observed for longer LR-PONs when directly modulated lasers(DMLs) are used because of the amplitude gain provided by the combined effect of dispersion and DML's chirp. Compared with optical back-to-back operation, the LQI level degrades to the maximum around 20% for LR-PONs ranging between 75 and 125 km of fiber reach and with a wireless coverage of 2 m in the 10-GHz UWB band. The same level of LQI degradation is observed using the 60-GHz UWB band with a LR-PON integrating 101 km of access network, a last-mile distribution using ultra-bendable fiber, and a 5.2-m wireless link.展开更多
基金the National Key Research and Development Program of China(Grant No.2021YFA1402102)the National Natural Science Foundation of China(Grant No.62171249)the Fund by Tsinghua University Initiative Scientific Research Program.
文摘The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’performance.Aiming at this goal,a method achieved by determining the optimal calculation interval and accelerating adjustment stage is proposed in this paper.The determinants of the CTS’s calculation interval(characteristics of the clock ensemble,the measurement noise,the time and frequency synchronization system’s noise and the auxiliary output generator noise floor)are studied and the optimal calculation interval is obtained.We also investigate the effect of ensemble algorithm’s initial parameters on the CTS’s adjustment stage.A strategy to get the reasonable initial parameters of ensemble algorithm is designed.The results show that the adjustment stage can be finished rapidly or even can be shorten to zero with reasonable initial parameters.On this basis,we experimentally generate a distributed CTS with a calculation interval of 500 s and its stability outperforms those of the member clocks when the averaging time is longer than1700 s.The experimental result proves that the CTS’s real-time performance is significantly improved.
文摘Due to their significant correlation and redundancy,conventional block cipher cryptosystems are not efficient in encryptingmultimedia data.Streamciphers based onCellularAutomata(CA)can provide amore effective solution.The CA have recently gained recognition as a robust cryptographic primitive,being used as pseudorandom number generators in hash functions,block ciphers and stream ciphers.CA have the ability to perform parallel transformations,resulting in high throughput performance.Additionally,they exhibit a natural tendency to resist fault attacks.Few stream cipher schemes based on CA have been proposed in the literature.Though,their encryption/decryption throughput is relatively low,which makes them unsuitable formultimedia communication.Trivium and Grain are efficient stream ciphers that were selected as finalists in the eSTREAM project,but they have proven to be vulnerable to differential fault attacks.This work introduces a novel and scalable stream cipher named CeTrivium,whose design is based on CA.CeTrivium is a 5-neighborhood CA-based streamcipher inspired by the designs of Trivium and Grain.It is constructed using three building blocks:the Trivium(Tr)block,the Nonlinear-CA(NCA)block,and the Nonlinear Mixing(NM)block.The NCA block is a 64-bit nonlinear hybrid 5-neighborhood CA,while the Tr block has the same structure as the Trivium stream cipher.The NM block is a nonlinear,balanced,and reversible Boolean function that mixes the outputs of the Tr and NCA blocks to produce a keystream.Cryptanalysis of CeTrivium has indicated that it can resist various attacks,including correlation,algebraic,fault,cube,Meier and Staffelbach,and side channel attacks.Moreover,the scheme is evaluated using histogramand spectrogramanalysis,aswell as several differentmeasurements,including the correlation coefficient,number of samples change rate,signal-to-noise ratio,entropy,and peak signal-to-noise ratio.The performance of CeTrivium is evaluated and compared with other state-of-the-art techniques.CeTrivium outperforms them in terms of encryption throughput while maintaining high security.CeTrivium has high encryption and decryption speeds,is scalable,and resists various attacks,making it suitable for multimedia communication.
基金supported by the Research Fund of National Key Laboratory of Computer Architecture under Grant No.CARCH201501the Open Project Program of the State Key Laboratory of Mathematical Engineering and Advanced Computing under Grant No.2016A09
文摘In the era of Big Data, typical architecture of distributed real-time stream processing systems is the combination of Flume, Kafka, and Storm. As a kind of distributed message system, Kafka has the characteristics of horizontal scalability and high throughput, which is manly deployed in many areas in order to address the problem of speed mismatch between message producers and consumers. When using Kafka, we need to quickly receive data sent by producers. In addition, we need to send data to consumers quickly. Therefore, the performance of Kafka is of critical importance to the performance of the whole stream processing system. In this paper, we propose the improved design of real-time stream processing systems, and focus on improving the Kafka's data loading process.We use Kafka cat to transfer data from the source to Kafka topic directly, which can reduce the network transmission. We also utilize the memory file system to accelerate the process of data loading, which can address the bottleneck and performance problems caused by disk I/O. Extensive experiments are conducted to evaluate the performance, which show the superiority of our improved design.
基金National High-Tech Research and Development Program of China (863 Program) (No.2007AA01Z309)
文摘With the continual growth of the variety and complexity of network crime means, the traditional packet feature matching cannot detect all kinds of intrusion behaviors completely. It is urgent to reassemble network stream to perform packet processing at a semantic level above the network layer. This paper presents an efficient TCP stream reassembly mechanism for real-time processing of high-speed network traffic. By analyzing the characteristics of network stream in high-speed network and TCP connection establishment process, several polices for designing the reassembly mechanism are built. Then, the reassembly implementation is elaborated in accordance with the policies. Finally, the reassembly mechanism is compared with the traditional reassembly mechanism by the network traffic captured in a typical gigabit gateway. Experiment results illustrate that the reassembly mechanism is efficient and can satisfy the real-time property requirement of traffic analysis system in high-speed network.
文摘In recent years,real-time video streaming has grown in popularity.The growing popularity of the Internet of Things(IoT)and other wireless heterogeneous networks mandates that network resources be carefully apportioned among versatile users in order to achieve the best Quality of Experience(QoE)and performance objectives.Most researchers focused on Forward Error Correction(FEC)techniques when attempting to strike a balance between QoE and performance.However,as network capacity increases,the performance degrades,impacting the live visual experience.Recently,Deep Learning(DL)algorithms have been successfully integrated with FEC to stream videos across multiple heterogeneous networks.But these algorithms need to be changed to make the experience better without sacrificing packet loss and delay time.To address the previous challenge,this paper proposes a novel intelligent algorithm that streams video in multi-home heterogeneous networks based on network-centric characteristics.The proposed framework contains modules such as Intelligent Content Extraction Module(ICEM),Channel Status Monitor(CSM),and Adaptive FEC(AFEC).This framework adopts the Cognitive Learning-based Scheduling(CLS)Module,which works on the deep Reinforced Gated Recurrent Networks(RGRN)principle and embeds them along with the FEC to achieve better performances.The complete framework was developed using the Objective Modular Network Testbed in C++(OMNET++),Internet networking(INET),and Python 3.10,with Keras as the front end and Tensorflow 2.10 as the back end.With extensive experimentation,the proposed model outperforms the other existing intelligentmodels in terms of improving the QoE,minimizing the End-to-End Delay(EED),and maintaining the highest accuracy(98%)and a lower Root Mean Square Error(RMSE)value of 0.001.
基金The National Natural Science Foundation of China (91438203,91638301,91438111,41601476).
文摘This paper focuses on the time efficiency for machine vision and intelligent photogrammetry, especially high accuracy on-board real-time cloud detection method. With the development of technology, the data acquisition ability is growing continuously and the volume of raw data is increasing explosively. Meanwhile, because of the higher requirement of data accuracy, the computation load is also becoming heavier. This situation makes time efficiency extremely important. Moreover, the cloud cover rate of optical satellite imagery is up to approximately 50%, which is seriously restricting the applications of on-board intelligent photogrammetry services. To meet the on-board cloud detection requirements and offer valid input data to subsequent processing, this paper presents a stream-computing of high accuracy on-board real-time cloud detection solution which follows the “bottom-up” understanding strategy of machine vision and uses multiple embedded GPU with significant potential to be applied on-board. Without external memory, the data parallel pipeline system based on multiple processing modules of this solution could afford the “stream-in, processing, stream-out” real-time stream computing. In experiments, images of GF-2 satellite are used to validate the accuracy and performance of this approach, and the experimental results show that this solution could not only bring up cloud detection accuracy, but also match the on-board real-time processing requirements.
基金supported by National Key Technology Research and Development Program of China under Grant No.2015BAH08F01the joint fund of the Ministry of Education of People's Republic of China and China Mobile Communications Corporation under Grant No.MCM20160304
文摘Multi-channel can be used to provide higher transmission ability to the bandwidth-intensive and delay-sensitive real-time streams. However, traditional channel capacity theories and coding schemes are seldom designed for the real-time streams with strict delay constraint, especially in multi-channel context. This paper considers a real-time stream system, where real-time messages with different importance should be transmitted through several packet erasure channels, and be decoded by the receiver within a fixed delay. Based on window erasure channels and i.i.d.(identically and independently distributed) erasure channels, we derive the Multi-channel Real-time Stream Transmission(MRST) capacity models for Symmetric Real-time(SR) streams and Asymmetric Real-time(AR) streams respectively. Moreover, for window erasures, a Maximum Equilibrium Intra-session Code(MEIC) is presented for SR and AR streams, and is shown able to asymptotically achieve the theoretical MRST capacity. For i.i.d. erasures, we propose an Adaptive Maximum Equilibrium Intra-session Code(AMEIC), and then prove AMEIC can closely approach the MRST transmission capacity. Finally, the performances of the proposed codes are verified by simulations.
文摘In the context of current climate change, an abnormality of flooding is a common form of disaster in Vietnam. Hanh Stream reservoir has occurred great flood in 1986, 2010. In the future, the risk of flooding is possible to happen again. In view of management of the risk of natural disasters: large flooding situation downstream is one of the most dangerous risks for the reservoir. Due to downstream of Hanh Stream reservoir is a narrow coastal plains, quick infrastructure development, especially interwoven road and railway systems, so that flood drainage ability will be affected greatly. The consciousness of risks that may be occurred in the future in order to propose preventive measures and proactive response to minimize damages always is the requirement for all projects. The hydrodynamic calculation, flooding maps, emergency plan to prevent flooding downstream of Hanh Stream reservoir is also needed. The article is raised the issue of requirements to calculate coastal narrow delta strip flooding in the Central of Vietnam when impacted by the upstream reservoir of flood discharge in terms of extreme heavy rain and flooding and presented computational methods of Mike software package for case flooded plain of Cam Ranh Bay in downstream reservoirs of Hanh Stream, Khanh Hoa Province, Vietnam.
基金supported by the Project Funding of the Fund Committee of Science Department (No.40346029)National Natural Science Foundation (40346029)the offing comprehensive evaluation of our country (908-02-01-03)
文摘A 2-dimensional global free surface diagnostic model, combined with dynamic calculation, is used to investigate the world ocean circulation; the model has a horizontal resolution of 1/4°×1/4°. The simulated results agree well with the results of other modesl and observations. The distribution of Stream Function suggests that the main circulation systems in the wodd ocean have been represented, including oceanic currents strengthened in the oceanic western. Be close to the observed results, the net mass transport of the Kuroshio axes is estimated about 54Sv; The distribution of the horizontal circulation in each layer shows that the main circulation systems in the world ocean are well simulated, for example, the Kuroshio and the Antarctic Circumpolar Current can go down to the bottom layer, but the Gulf Stream cannot, and its direction reverses at the depths of 1000 to 2 000 m.
基金supported by the National Nature Science Foundation of China(NSFC 60622110,61471220,91538107,91638205)National Basic Research Project of China(973,2013CB329006),GY22016058
文摘With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation methods very attractive. In this paper, we propose a two-phase rate adaptation strategy to improve users' real-time video Qo E. First, to measure and assess video Qo E, we provide a continuous Qo E prediction engine modeled by RNN recurrent neural network. Different from traditional Qo E models which consider the Qo E-aware factors separately or incompletely, our RNN-Qo E model accounts for three descriptive factors(video quality, rebuffering, and rate change) and reflects the impact of cognitive memory and recency. Besides, the video playing is separated into the initial startup phase and the steady playback phase, and we takes different optimization goals for each phase: the former aims at shortening the startup delay while the latter ameliorates the video quality and the rebufferings. Simulation results have shown that RNN-Qo E can follow the subjective Qo E quite well, and the proposed strategy can effectively reduce the occurrence of rebufferings caused by the mismatch between the requested video rates and the fluctuated throughput and attains standout performance on real-time Qo E compared with classical rate adaption methods.
文摘Nowadays mobile streaming service through cell phone is becoming the highlight of new value-added mobile services. Based on the present CDMAlx wireless data network and Binary Runtime Environment for Wireless (BREW) platform, adopting compression technologies of H.264 and QCP, a set of streaming media players are designed and implemented, and the principle, structure, key technologies and performance analysis of this system are introduced. This player works well in practice.
文摘360 video streaming services over the network are becoming popular. In particular, it is easy to experience 360 video through the already popular smartphone. However, due to the nature of 360 video, it is difficult to provide stable streaming service in general network environment because the size of data to send is larger than that of conventional video. Also, the real user's viewing area is very small compared to the sending amount. In this paper, we propose a system that can provide high quality 360 video streaming services to the users more efficiently in the cloud. In particular, we propose a streaming system focused on using a head mount display (HMD).
基金This research work has been conducted in cooperation with members of DETSI project supported by BPI France and Pays de Loire and Auvergne Rhone Alpes.
文摘The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal activity on the network.To reduce these losses,a new fraud detection approach is required.Telecom fraud detection involves identifying a small number of fraudulent calls from a vast amount of call traffic.Developing an effective strategy to combat fraud has become challenging.Although much effort has been made to detect fraud,most existing methods are designed for batch processing,not real-time detection.To solve this problem,we propose an online fraud detection model using a Neural Factorization Autoencoder(NFA),which analyzes customer calling patterns to detect fraudulent calls.The model employs Neural Factorization Machines(NFM)and an Autoencoder(AE)to model calling patterns and a memory module to adapt to changing customer behaviour.We evaluate our approach on a large dataset of real-world call detail records and compare it with several state-of-the-art methods.Our results show that our approach outperforms the baselines,with an AUC of 91.06%,a TPR of 91.89%,an FPR of 14.76%,and an F1-score of 95.45%.These results demonstrate the effectiveness of our approach in detecting fraud in real-time and suggest that it can be a valuable tool for preventing fraud in telecommunications networks.
基金supported by the Fundao para a Ciência e a Tecnologia from Portugal under projects PEst-OE/EEI/LA0008/2013 and TURBO-PTDC/EEATEL/104358/2008by the European FIVER-FP7-ICT-2009-4-249142 project
文摘Real-time video streaming using ultra-wideband(UWB) technology is experimentally demonstrated along long-reach passive optical networks(LR-PONs) with different wired and wireless reaches. Experimental tests using external and direct modulation with UWB wireless radiation in the 10- and 60-GHz bands are performed. An ultra-bendable fiber is also considered for a last-mile distribution. The video quality at the output of the optical fiber infrastructure of the LR-PON is assessed using the error vector magnitude(EVM), and the link quality indicator(LQI) is used as a figure of merit after wireless radiation. An EVM below –17 dB is achieved for both externally and directly modulated LR-PONs comprising up to 125 km of optical fiber. EVM improvement is observed for longer LR-PONs when directly modulated lasers(DMLs) are used because of the amplitude gain provided by the combined effect of dispersion and DML's chirp. Compared with optical back-to-back operation, the LQI level degrades to the maximum around 20% for LR-PONs ranging between 75 and 125 km of fiber reach and with a wireless coverage of 2 m in the 10-GHz UWB band. The same level of LQI degradation is observed using the 60-GHz UWB band with a LR-PON integrating 101 km of access network, a last-mile distribution using ultra-bendable fiber, and a 5.2-m wireless link.