期刊文献+
共找到295篇文章
< 1 2 15 >
每页显示 20 50 100
Effect of Triptolide on Expression of Receptor Activator of Nuclear Factor-κB Ligand in Rat Adjuvant Induced Arthritis 被引量:1
1
作者 胡永红 罗波 +2 位作者 张明敏 涂胜豪 曾克勤 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2006年第3期344-346,共3页
The effect of triptolide (TP) on the expression of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) was explored in rat adjuvant induced arthritis (AA). AA was induced in Wista... The effect of triptolide (TP) on the expression of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) was explored in rat adjuvant induced arthritis (AA). AA was induced in Wistar rats. Arthritis rats were treated with TP and methotrexate (MTX) at the onset (day 9) of arthritis. On the peak of arthritis (day 24), the expression of RANKL and OPG protein in the joints and RANKL mRNA in peripheral blood mononuclear cells (PBMC) was detected. TNF-α and IL-1β levels in peripheral blood were determined. Bone erosion scores were also evaluated. The results showed that bone erosion scores in TP and MTX groups were lower than in AA group (.P〈0.01) ; The expression levels of RANKL in the synovium (P〈0.01) and bone (P〈0.05), and OPG level in synovium (P〈0.05) were lower in TP group than in AA group (P〈0.05). In TP group, the expression levels of RANKL mRNA and TNF-α, IL-1β in PBMC were lower than in AA group (all P〈0.01). It was concluded that TP could inhibit rat adjuvant arthritis bone erosion by suppressing the expression of RANKL. 展开更多
关键词 arthritis experimental TRIPTOLIDE METHOTREXATE receptor activator of nuclear factor-κb ligand OSTEOPROTEGERIN
下载PDF
Influence of baicalin on the expression of receptor activator of nuclear factor-κB ligand and osteoprotegerin in human periodontal ligament cells
2
作者 Yue ChenDepartment of Periodontology and Oral Medicine,Hospital of Stomatology,Xi’an Jiaotong University,Xi’an 710004,China 《Journal of Pharmaceutical Analysis》 SCIE CAS 2009年第4期256-262,共7页
Objective To study the effect of baicalin on the expression of receptor activator of nuclear factor-κB ligand(RANKL)and osteoprotegerin(OPG)in cultured human periodontal ligament(HPDL)cells.Methods Small interfering ... Objective To study the effect of baicalin on the expression of receptor activator of nuclear factor-κB ligand(RANKL)and osteoprotegerin(OPG)in cultured human periodontal ligament(HPDL)cells.Methods Small interfering RNA(siRNA)eukaryotic expression vector targeted transforming growth factor βⅡ receptor(TGF-β RⅡ)was constructed and transfected into T cells.HPDL cells with T cells transfected with siRNA or not were placed in the culture medium that had been added with lipopolysaccharide(LPS)and baicalin.The obtained solution was divided into six groups according to the components(group Ⅰ:HPDL cells+LPS+T cells transfected with siRNA1+baicalin;group Ⅱ:HPDL cells+LPS+T cells transfected with siRNA1;group Ⅲ:HPDL cells+LPS+T cells+baicalin;group Ⅳ:HPDL cells+LPS+T cells;group Ⅴ:HPDL cells+baicalin;group Ⅵ:HPDL cells)and was cultured for 48 hours.RT-PCR was used to observe the effect of baicalin on the expression of OPG-RANKL in HPDL cells.Results The ratio of RANKL/OPG in group Ⅰ was lower than that in group Ⅱ(P<0.01)and higher than that in group Ⅲ(P<0.01);The ratio of RANKL/OPG in group Ⅲ was lower than that in group Ⅳ(P<0.01);the ratio of RANKL/OPG in group Ⅳ was higher than that in group Ⅵ(P<0.01);the ratio of RANKL/OPG in group Ⅴ was lower than that in group Ⅵ(P<0.05).Conclusion ① Baicalin could decrease the ratio of RANKL/OPG in HPDL cells.② The TGF-β signaling transduction plays an important role in the effect of baicalin on the RANKL/OPG ratio in HPDL cells.③ Baicalin acts not only through TGF-β to regulate RANKL/OPG in HPDL cells,but also through other pathways. 展开更多
关键词 transforming growth factor βⅡ receptor small interfering RNA OSTEOPROTEGERIN receptor activator of nuclear factor-κb ligand human periodontal ligament cell
下载PDF
Imbalance of osteoprotegerin/receptor activator of nuclear factor-κB ligand and oxidative stress in patients with obstructive sleep apnea-hypopnea syndrome 被引量:18
3
作者 Xiao-Rong Ma Yong Wang Yong-Chang Sun 《Chinese Medical Journal》 SCIE CAS CSCD 2019年第1期25-29,共5页
Background:Obstructive sleep apnea-hypopnea syndrome (OSAHS) is associated with a higher prevalence of osteoporosis.However,the underlying mechanisms linking OSAHS with bone loss are still unclear.The aim of this stud... Background:Obstructive sleep apnea-hypopnea syndrome (OSAHS) is associated with a higher prevalence of osteoporosis.However,the underlying mechanisms linking OSAHS with bone loss are still unclear.The aim of this study was to investigate the changes of receptor activator of nuclear factor-κB ligand (RANKL,an osteoclastogenesis-promoting factor) and osteoprotegerin (OPG,the decoy receptor for RANKL),oxidative stress and bone metabolism markers in OSAHS,in order to understand the potential mechanisms underlying bone loss in OSAHS patients.Methods:Forty-eight male patients with OSAHS,confirmed by polysomnography (PSG) study,were enrolled.Twenty male subjects who were confirmed as not having OSAHS served as the controls.The subjects’bone mineral density (BMD) was assessed in lumbar spine and femoral neck using dual-energy X-ray absorptiometry (DXA).Blood samples were collected from all subjects for measurement of RANKL,OPG,the bone formation marker bone-specific alkaline phosphatase (BAP),the bone resorption marker tartrate-resistant acid phosphatase 5b (TRAP-5b),and total antioxidant capacity (TAOC).Results:The BMD and the T-score of the femoral neck and the lumbar spine were significantly lower in OSAHS patients as compared to the control group (P< 0.05).The serum level of BAP was significantly decreased in the OSAHS group (15.62 ± 5.20 μg/L) as compared to the control group (18.83 ± 5.50 μg/L,t= -2.235,P< 0.05),while the levels of TRAP-5b did not differ between the two groups (t= -1.447,P> 0.05).The serum level of OPG and the OPG/RANKL ratio were lower in the OSAHS group compared to the control group (bothP< 0.05).TAOC level was also decreased significantly in the OSAHS group (P< 0.05).Correlation analysis showed that the TAOC level was positively correlated with BAP in the OSAHS group (r= 0.248,P= 0.04),but there were no correlations between TAOC and the BMD or the T-scores.The correlations between the level of OPG (or the OPG/RANKL ratio) and BMD or TAOC did not reach significance.Conclusion:In OSAHS patients,lower levels of TAOC were associated with decreased bone formation,suggesting a role of oxidative stress in bone loss,while the role of OPG/RANKL imbalance in bone metabolism in OSAHS needs further evaluation . 展开更多
关键词 ObSTRUCTIVE sleep apnea-hypopnea syndrome Osteoporosis receptor activator of nuclear factor-κb LIGAND Oxidative stress
原文传递
Role of osteoprotegerin/receptor activator of nuclear factor kappa B/receptor activator of nuclear factor kappa B ligand axis in nonalcoholic fatty liver disease 被引量:11
4
作者 Lucia Pacifico Gian Marco Andreoli +2 位作者 Miriam D'Avanzo Delia De Mitri Pasquale Pierimarchi 《World Journal of Gastroenterology》 SCIE CAS 2018年第19期2073-2082,共10页
Concomitantly with the increase in the prevalences of overweight/obesity, nonalcoholic fatty liver disease(NAFLD) has worldwide become the main cause of chronic liver disease in both adults and children. Patients with... Concomitantly with the increase in the prevalences of overweight/obesity, nonalcoholic fatty liver disease(NAFLD) has worldwide become the main cause of chronic liver disease in both adults and children. Patients with fatty liver display features of metabolic syndrome(Met S), like insulin resistance(IR), glucose intolerance, hypertension and dyslipidemia. Recently, epidemiological studies have linked obesity, Met S, and NAFLD to decreased bone mineral density and osteoporosis, highlighting an intricate interplay among bone, adipose tissue, and liver. Osteoprotegerin(OPG), an important symbol of the receptor activator of nuclear factor-B ligand/receptor activator of nuclear factor kappa B/OPG system activation, typically considered for its role in bone metabolism, may also play critical roles in the initiation and perpetuation of obesityrelated comorbidities. Clinical data have indicated that OPG concentrations are associated with hypertension, left ventricular hypertrophy, vascular calcification, endothelial dysfunction, and severity of liver damage in chronic hepatitis C. Nonetheless, the relationship between circulating OPG and IR as a key feature of Met S as well as between OPG and NAFLD remains uncertain. Thus, the aims of the present review are to provide the existent knowledge on these associations and to discuss briefly the underlying mechanisms linking OPG and NAFLD. 展开更多
关键词 Nonalcoholic fatty liver disease Insulin resistance Metabolic syndrome OSTEOPROTEGERIN receptor activator of nuclear factor KAPPA b receptor activator of nuclear factor KAPPA b LIGAND
下载PDF
Receptor activator of nuclear factorκB ligand/osteoprotegerin axis and vascular calcifications in patients with chronic kidney disease 被引量:5
5
作者 Michalis Spartalis Aikaterini Papagianni 《World Journal of Nephrology》 2016年第1期1-5,共5页
Vascular calcifications are commonly observed in patients with chronic kidney disease (CKD) and contri-bute to the excessive cardiovascular morbidity and mortality rates observed in these patients populations. Altho... Vascular calcifications are commonly observed in patients with chronic kidney disease (CKD) and contri-bute to the excessive cardiovascular morbidity and mortality rates observed in these patients populations. Although the pathogenetic mechanisms are not yet fully elucidated, recent evidence suggests a link between bone metabolism and the development and progression of vascular calcifications. Moreover, accumulating data indicate that receptor activator of nuclear factor κB ligand/osteoprotegerin axis which plays essential roles in the regulation of bone metabolism is also involved in extra-osseous bone formation. Further studies are required to establish the prognostic significance of the above biomarkers as predictors of the presence and severity of vascular calcifications in CKD patients and of cardiovascular morbidity and mortality. Moreover, randomized clinical trials are needed to clarify whether inhibition of osteoclast activity will protect from vascular calcifcations. 展开更多
关键词 Arterial stiffness bone turnover Chronic kidney disease OSTEOPROTEGERIN RANK ligand receptor activator nuclear factor κb Vascular calcifcations
下载PDF
Apigenin ameliorates imiquimod-induced psoriasis in C57BL/6J mice by inactivating STAT3 and NF-κB 被引量:2
6
作者 Xianshe Meng Shihong Zheng +11 位作者 Zequn Yin Xuerui Wang Daigang Yang Tingfeng Zou Huaxin Li Yuanli Chen Chenzhong Liao Zhouling Xie Xiaodong Fan Jihong Han Yajun Duan Xiaoxiao Yang 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期211-224,共14页
Psoriasis is a chronic autoimmune disease featured by patches on the skin.It is caused by malfunction of immune cells and keratinocytes with inflammation as one of its key features.Apigenin(API)is a natural flavonoid ... Psoriasis is a chronic autoimmune disease featured by patches on the skin.It is caused by malfunction of immune cells and keratinocytes with inflammation as one of its key features.Apigenin(API)is a natural flavonoid with anti-inflammatory and immunoregulatory properties.Therefore,we speculated that API can ameliorate psoriasis,and determined its effect on the development of psoriasis by using imiquimod(IMQ)-induced psoriasis mouse model.Our results showed that API attenuated IMQ-induced phenotypic changes,such as erythema,scaling and epidermal thickening,and improved splenic hyperplasia.Abnormal differentiation of immune cells was restored in API-treated mice.Mechanistically,we revealed that API is a key regulator of signal transducer activator of transcription 3(STAT3).API regulated immune responses by reducing interleukin-23(IL-23)/STAT3/IL-17A axis.Moreover,it suppressed IMQ-caused cell hyperproliferation by inactivating STAT3 through regulation of extracellular signal-regulated kinase 1/2 and nuclear factor-κB(NF-κB)pathway.Furthermore,API reduced expression of inflammatory cytokines through inactivation of NF-κB.Taken together,our study demonstrates that API can ameliorate psoriasis and may be considered as a strategy for psoriasis treatment. 展开更多
关键词 PSORIASIS APIGENIN IMIQUIMOD Inflammation Signal transducer activator of transcription 3 (STAT3) nuclear factor-κb(NF-κb)
下载PDF
Effects of ω-3 fatty acids on toll-like receptor 4 and nuclear factor-κB p56 in lungs of rats with severe acute pancreatitis 被引量:12
7
作者 Bin Wang Xiao-Wei Wu +4 位作者 Mei-Xia Guo Min-Li Li Xiao-Bing Xu Xin-Xin Jin Xiao-Hua Zhang 《World Journal of Gastroenterology》 SCIE CAS 2016年第44期9784-9793,共10页
AIM To determine the effects of ω-3 fatty acids(ω-3FA) on the toll-like receptor 4(TLR4)/nuclear factor κB p56(NF-κBp56) signal pathway in the lungs of rats with severe acute pancreatitis(SAP).METHODS A total of 5... AIM To determine the effects of ω-3 fatty acids(ω-3FA) on the toll-like receptor 4(TLR4)/nuclear factor κB p56(NF-κBp56) signal pathway in the lungs of rats with severe acute pancreatitis(SAP).METHODS A total of 56 Sprague-Dawley rats were randomly divided into 4 groups: control group, SAP-saline group, SAP-soybean oil group and SAP-ω-3FA group. SAP was induced by the retrograde infusion of sodium taurocholate into the pancreatic duct. The expression of TLR4 and NF-κBp56 in the lungs was evaluated by immunohistochemistry and Western blot analysis. The levels of inflammatory cytokines interleukin-6 and tumor necrosis factor-alpha in the lungs were measured by enzyme-linked immunosorbent assay. RESULTS The expression of TLR4 and NF-κBp56 in lungs and of inflammatory cytokines in serum significantly increased in the SAP group compared with the control group(P < 0.05), but was significantly decreased in the ω-3FA group compared with the soybean oil group at 12 and 24 h(P < 0.05).CONCLUSION During the initial stage of SAP, ω-3FA can efficiently lower the inflammatory response and reduce lung injury by triggering the TLR4/NF-κBp56 signal pathway. 展开更多
关键词 Severe acute pancreatitis ω-3 fatty acids Lung injury Toll-like receptor 4 nuclear factor-κb p56 CYTOKINE
下载PDF
Glycine Attenuates Myocardial Fibrosis in Myocardial Infarction in Rats Partly through Modulating Signal Transducer and Activator of Transcription 3/Nuclear Factor-κB/Transforming Growth Factor-β axis
8
作者 Ning Li Yong Wang +7 位作者 Chun Li Xu Chen Xue-Feng Zhang Nan Nan Tan Yi-Qin Hong Ming-Yan Shao Bing-Hua Tang Dong-Qing Guo 《World Journal of Traditional Chinese Medicine》 CAS CSCD 2024年第2期263-270,共8页
Objective: Inflammation and fibrosis are strongly associated with each other. Glycine is present in various traditional Chinese medicines and exhibits anti-inflammatory activity. However, the effects of glycine on myo... Objective: Inflammation and fibrosis are strongly associated with each other. Glycine is present in various traditional Chinese medicines and exhibits anti-inflammatory activity. However, the effects of glycine on myocardial fibrosis(MF) in rats with myocardial infarction(MI) have not been reported. The purpose of this study is to investigate the effects of glycine therapy on MF and comprehend its underlying mechanisms. Materials and Methods: Left anterior descending artery ligation-induced MI in Sprague Dawley rats was leveraged to assess the therapeutic effects of Glycine. Rats received either normal saline or glycine(0.5 mg/g bodyweight) for 7 days. Results: Glycine upregulated cardiac ejection fraction and fractional shortening to improve cardiac function, as evaluated by echocardiography. Histological and immunohistochemical analyses demonstrated that glycine could decrease inflammatory cell infiltration and alleviate collagen deposition. Western blotting revealed that nuclear factor-κB(NF-κB)-mediated inflammatory signaling was also downregulated by glycine treatment. The expression of signal transducer and activator of transcription 3(STAT3), tumor necrosis factor-α, and transforming growth factor-β(TGF-β) was decreased significantly in the glycine-treated group compared to the model group. Thus, glycine plays a protective role against myocardial ischemia and subsequent MF. Conclusion: The protective effects of glycine were achieved partly through STAT3/NF-κB/TGF-β signaling pathway. 展开更多
关键词 GLYCINE myocardial fibrosis signal transducer and activator of transcription 3/nuclear factor-κb/transforming growth factor-β
原文传递
Maraviroc promotes recovery from traumatic brain injury in mice by suppression of neuroinflammation and activation of neurotoxic reactive astrocytes 被引量:10
9
作者 Xi-Lei Liu Dong-Dong Sun +13 位作者 Mu-Tian Zheng Xiao-Tian Li Han-Hong Niu Lan Zhang Zi-Wei Zhou Hong-Tao Rong Yi Wang Ji-Wei Wang Gui-Li Yang Xiao Liu Fang-Lian Chen Yuan Zhou Shu Zhang Jian-Ning Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第1期141-149,共9页
Neuroinflammation and the NACHT,LRR,and PYD domains-containing protein 3 inflammasome play crucial roles in secondary tissue damage following an initial insult in patients with traumatic brain injury(TBI).Maraviroc,a ... Neuroinflammation and the NACHT,LRR,and PYD domains-containing protein 3 inflammasome play crucial roles in secondary tissue damage following an initial insult in patients with traumatic brain injury(TBI).Maraviroc,a C-C chemokine receptor type 5 antagonist,has been viewed as a new therapeutic strategy for many neuroinflammatory diseases.We studied the effect of maraviroc on TBI-induced neuroinflammation.A moderate-TBI mouse model was subjected to a controlled cortical impact device.Maraviroc or vehicle was injected intraperitoneally 1 hour after TBI and then once per day for 3 consecutive days.Western blot,immunohistochemistry,and TUNEL(terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling)analyses were performed to evaluate the molecular mechanisms of maraviroc at 3 days post-TBI.Our results suggest that maraviroc administration reduced NACHT,LRR,and PYD domains-containing protein 3 inflammasome activation,modulated microglial polarization from M1 to M2,decreased neutrophil and macrophage infiltration,and inhibited the release of inflammatory factors after TBI.Moreover,maraviroc treatment decreased the activation of neurotoxic reactive astrocytes,which,in turn,exacerbated neuronal cell death.Additionally,we confirmed the neuroprotective effect of maraviroc using the modified neurological severity score,rotarod test,Morris water maze test,and lesion volume measurements.In summary,our findings indicate that maraviroc might be a desirable pharmacotherapeutic strategy for TBI,and C-C chemokine receptor type 5 might be a promising pharmacotherapeutic target to improve recovery after TBI. 展开更多
关键词 C-C chemokine receptor type 5(CCR5)antagonist high mobility group protein b1(HMGb1) MARAVIROC M1 microglia nuclear factor-κb pathway NACHT LRR and PYD domains-containing protein 3(NLRP3)inflammasome NEUROINFLAMMATION neurological function neurotoxic reactive astrocytes traumatic brain injury
下载PDF
基于核因子κB受体活化因子配体信号通路激活破骨细胞治疗骨结核的研究进展
10
作者 田宏晶 张彦军 +4 位作者 邓强 李军杰 杨军 刘鑫锋 杜建强 《中国防痨杂志》 CAS CSCD 北大核心 2024年第8期971-975,共5页
骨结核是一种严重危害人体健康的骨科感染性疾病,其病灶组织破坏的最大特点是骨质的吸收及破坏,其中破骨细胞是骨吸收的主要细胞。破骨细胞是由造血干细胞分化而来的多核细胞,通常是由核因子κB受体活化因子配体(receptor activator of ... 骨结核是一种严重危害人体健康的骨科感染性疾病,其病灶组织破坏的最大特点是骨质的吸收及破坏,其中破骨细胞是骨吸收的主要细胞。破骨细胞是由造血干细胞分化而来的多核细胞,通常是由核因子κB受体活化因子配体(receptor activator of nuclear factor-κB ligand,RANKL)与核因子κB受体活化因子(receptor activator for nuclear factor-κB,RANK)调控产生。结核分枝杆菌可以通过RANKL信号通路激活破骨细胞生成转录因子,以增强破骨细胞对骨质的吸收。笔者通过综述RANKL信号通路的结构及破骨细胞的研究进展,以及它们在骨结核临床治疗中可能发挥的潜在作用,为该领域的研究提供新的思路。 展开更多
关键词 结核 骨关节 核因子κb受体活化因子 信号传导 破骨细胞 总结性报告(主题)
下载PDF
Suppressing high mobility group box-1 release alleviates morphine tolerance via the adenosine5'-monophosphate-activated protein kinase/heme oxygenase-1 pathway
11
作者 Tong-Tong Lin Chun-Yi Jiang +10 位作者 Lei Sheng Li Wan Wen Fan Jin-Can Li Xiao-Di Sun Chen-Jie Xu Liang Hu Xue-Feng Wu Yuan Han Wen-Tao Liu Yin-Bing Pan 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期2067-2074,共8页
Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory p... Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory pain,but its role in morphine tolerance is unclear.In this study,we established rat and mouse models of morphine tolerance by intrathecal injection of morphine for 7 consecutive days.We found that morphine induced rat spinal cord neurons to release a large amount of HMGB1.HMGB1 regulated nuclear factor κB p65 phosphorylation and interleukin-1β production by increasing Toll-like receptor 4receptor expression in microglia,thereby inducing morphine tolerance.Glycyrrhizin,an HMGB1 inhibito r,markedly attenuated chronic morphine tole rance in the mouse model.Finally,compound C(adenosine 5’-monophosphate-activated protein kinase inhibitor) and zinc protoporphyrin(heme oxygenase-1 inhibitor)alleviated the morphine-induced release of HMGB1 and reduced nuclear factor κB p65 phosphorylation and interleukin-1β production in a mouse model of morphine tolerance and an SH-SY5Y cell model of morphine tole rance,and alleviated morphine tolerance in the mouse model.These findings suggest that morphine induces HMGB1 release via the adenosine 5’-monophosphate-activated protein kinase/heme oxygenase-1 signaling pathway,and that inhibiting this signaling pathway can effectively reduce morphine tole rance. 展开更多
关键词 adenosine 5’-monophosphate-activated protein kinase heme oxygenase-1 high mobility group box-1 INTERLEUKIN-1Β MICROGLIA morphine tolerance NEUROINFLAMMATION neuron nuclear factor-κb p65 Toll-like receptor 4
下载PDF
N-acetylserotonin alleviates retinal ischemia-reperfusion injury via HMGB1/RAGE/NF-κB pathway in rats
12
作者 Yu-Ze Zhao Xue-Ning Zhang +7 位作者 Yi Yin Pei-Lun Xiao Meng Gao Lu-Ming Zhang Shuan-Hu Zhou Shu-Na Yu Xiao-Li Wang Yan-Song Zhao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第2期228-238,共11页
AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for a... AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for advanced glycation end-products(RAGE)/nuclear factor-kappa B(NF-κB)signaling pathway.METHODS:A rat model of RIR was developed by increasing the pressure of the anterior chamber of the eye.Eighty male Sprague Dawley were randomly divided into five groups:sham group(n=8),RIR group(n=28),RIR+NAS group(n=28),RIR+FPS-ZM1 group(n=8)and RIR+NAS+FPS-ZM1 group(n=8).The therapeutic effects of NAS were examined by hematoxylin-eosin(H&E)staining,and retinal ganglion cells(RGCs)counting.The expression of interleukin 1 beta(IL-1β),HMGB1,RAGE,and nod-like receptor 3(NLRP3)proteins and the phosphorylation of nuclear factorkappa B(p-NF-κB)were analyzed by immunohistochemistry staining and Western blot analysis.The expression of HMGB1 protein was also detected by enzyme-linked immunosorbent assay(ELISA).RESULTS:H&E staining results showed that NAS significantly reduced retinal edema and increased the number of RGCs in RIR rats.With NAS therapy,the HMGB1 and RAGE expression decreased significantly,and the activation of the NF-κB/NLRP3 pathway was antagonized along with the inhibition of p-NF-κB and NLRP3 protein expression.Additionally,NAS exhibited an anti-inflammatory effect by reducing IL-1βexpression.The inhibitory of RAGE binding to HMGB1 by RAGE inhibitor FPS-ZM1 led to a significant decrease of p-NF-κB and NLRP3 expression,so as to the IL-1βexpression and retinal edema,accompanied by an increase of RGCs in RIR rats.CONCLUSION:NAS may exhibit a neuroprotective effect against RIR via the HMGB1/RAGE/NF-κB signaling pathway,which may be a useful therapeutic target for retinal disease. 展开更多
关键词 retinal diseases retinal ischemia—reperfusion injury N-ACETYLSEROTONIN high mobility group box 1 receptor for advanced glycation end-products nuclear factor-κb RATS
原文传递
核因子κB受体活化因子信号转导机制与破骨细胞的活化 被引量:7
13
作者 陈锋 任国武 +2 位作者 章晓云 陈跃平 石儒生 《中国组织工程研究》 CAS 北大核心 2023年第2期293-299,共7页
背景:破骨细胞是目前已知的唯一一种骨吸收细胞,其生命活动对骨骼的正常发育和骨骼损伤修复至关重要。在绝大多数骨病中,破骨细胞均显示出异常增殖分化和骨吸收活性增加,而核因子κB受体活化因子信号是调控破骨细胞生命过程的关键信号... 背景:破骨细胞是目前已知的唯一一种骨吸收细胞,其生命活动对骨骼的正常发育和骨骼损伤修复至关重要。在绝大多数骨病中,破骨细胞均显示出异常增殖分化和骨吸收活性增加,而核因子κB受体活化因子信号是调控破骨细胞生命过程的关键信号通路。目的:总结对破骨细胞核因子κB受体活化因子信号下游靶点及DNA转录因子的最新研究进展,为相关疾病的研究和治疗提供依据。方法:文献检索数据库包括中国知网、万方、维普数据库、PubMed、Embase及Web of Science数据库,中文检索词为“破骨细胞,破骨前体细胞,骨质疏松症,骨代谢,发病机制,表观遗传学,信号通路,信号传导,转录因子,组织工程”,英文检索词为“osteoclasts,osteoclast precursor cells,osteoporosis,bone metabolism,pathogenesis,epigenetics,signaling pathway,signal transduction,transcription factors,tissue engineering”,时间设置为2017-2021年,根据纳入和排除标准共筛选52篇文献。结果与结论:核因子κB受体活化因子的特殊结构决定了其信号传导需要与肿瘤坏死因子受体激活因子6结合来募集多种蛋白、活性酶以及细胞因子,形成具有内在酶活性的核因子κB受体活化因子复合物;该复合物通过激活核因子κB、丝裂原活化蛋白激酶等信号通路的传导,最终调控破骨细胞分化、增殖、骨吸收等生命过程。 展开更多
关键词 破骨细胞 核因子κb受体活化因子 细胞信号通路 骨质疏松症 骨组织工程 综述
下载PDF
桥本甲状腺炎合并甲状腺乳头状癌患者中Toll样受体3和核转录因子-κB的表达及相关性分析
14
作者 车勇军 连蕾 +1 位作者 侯钰 曹海波 《中国耳鼻咽喉头颈外科》 CSCD 2023年第10期671-673,677,共4页
目的分析桥本甲状腺炎(Hashimoto thyroiditis,HT)合并甲状腺乳头状癌(PTC)患者Toll样受体3(toll-like receptor 3,TLR3)和核转录因子-κB(nuclear transcription factor-κB,NF-κB)表达及相关性。方法收取邯郸市中心医院2020年3月~202... 目的分析桥本甲状腺炎(Hashimoto thyroiditis,HT)合并甲状腺乳头状癌(PTC)患者Toll样受体3(toll-like receptor 3,TLR3)和核转录因子-κB(nuclear transcription factor-κB,NF-κB)表达及相关性。方法收取邯郸市中心医院2020年3月~2022年3月收治的130例行手术切除的甲状腺标本,其中正常甲状腺组织标本43例,HT标本47例,HT合并PTC标本40例,分析TLR3和NF-κB在正常甲状腺组织、HT组、HT合并PTC组中的表达,分析HT合并PTC组中TLR3和NF-κB表达与临床病理参数关系,Pearson相关性分析TLR3和NF-κB的关系。结果TLR3在正常甲状腺组织、HT组、HT合并PTC组中的阳性表达率分别为0(0/43)、80.85%(38/47)、90.00%(36/40);NF-κB在以上三组中的阳性表达率分别为0(0/43)、68.09%(32/47)、85.00%(34/40)。TLR3和NF-κB在HT组、HT合并PTC组中的阳性表达率均高于正常甲状腺组织(P<0.05),TLR3和NF-κB表达与性别、年龄、HT合并PTC病理学特征、病灶类型、淋巴结转移、甲状腺包膜侵犯差异比较均无统计学意义(P均>0.05)。TLR3和NF-κB呈显著正相关(r=0.589,P<0.05)。结论TLR3和NF-κB在HT合并PTC组织中的阳性率高于正常甲状腺组织,且二者表达呈正相关。 展开更多
关键词 甲状腺肿瘤(Thyroid Neoplasms) 甲状腺炎 自身免疫性(Thyroiditis Autoimmune) 免疫组织化学(Immunohistochemistry) 核转录因子-κb(nuclear transcription factor-κb) Toll样受体3(toll-like receptor 3)
下载PDF
Puerarin partly counteracts the inflammatory response after cerebral ischemia/reperfusion via activating the cholinergic anti-inflammatory pathway 被引量:41
15
作者 Xiaojie Liu Zhigang Mei +2 位作者 Jingping Qian Yongbao Zeng Mingzhi Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第34期3203-3215,共13页
Puerarin, a major isoflavonoid derived from the Chinese medical herb radix puerariae (Gegen), has been reported to inhibit neuronal apoptosis and play an anti-inflammatory role in focal cerebral ischemia model rats.... Puerarin, a major isoflavonoid derived from the Chinese medical herb radix puerariae (Gegen), has been reported to inhibit neuronal apoptosis and play an anti-inflammatory role in focal cerebral ischemia model rats. Recent findings regarding stroke pathophysiology have recognized that anti-inflammation is an important target for the treatment of ischemic stroke. The cholinergic anti-inflammatory pathway is a highly robust neural-immune mechanism for inflammation control. This study was to investigate whether activating the cholinergic anti-inflammatory pathway can be involved in the mechanism of inhibiting the inflammatory response during puerarin-induced cerebral ischemia/reperfusion in rats. Results showed that puerarin pretreatment (intravenous injection) re- duced the ischemic infarct volume, improved neurological deficit after cerebral ischemia/reperfusion and decreased the levels of interleukin-1β, interleukin-6 and tumor necrosis factor-a in brain tissue. Pretreatment with puerarin (intravenous injection) attenuated the inflammatory response in rats, which was accompanied by janus-activated kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3) activation and nuclear factor kappa B (NF-KB) inhibition. These observa- tions were inhibited by the alpha7 nicotinic acetylcholine receptor (a7nAchR) antagonist a-bungarotoxin (a-BGT). In addition, puerarin pretreatment increased the expression of a7nAchR mRNA in ischemic cerebral tissue. These data demonstrate that puerarin pretreatment strongly protects the brain against cerebral ischemia/reperfusion injury and inhibits the inflammatory re- sponse. Our results also indicated that the anti-inflammatory effect of puerarin may partly be medi- ated through the activation of the cholinergic anti-inflammatory pathway. 展开更多
关键词 neural regeneration cerebral ischemia/reperfusion inflammation cholinergic anti-inflammatory pathway alpha7 nicotinicacetylcholine receptors nuclear factor kappa b janus-activated kinase 2 signal transducers and activators of transcription 3 grants-supported paper NEUROREGENERATION
下载PDF
Mindin is upregulated during colitis and may activate NF-κB in a TLR-9 mediated manner 被引量:3
16
作者 Bayasi Guleng 《World Journal of Gastroenterology》 SCIE CAS CSCD 2010年第9期1070-1075,共6页
AIM:To investigate the regulation of mindin expression and the signaling pathway involved during inflammation.METHODS:C57BL/6 mice were treated with 3% dextran sulfate sodium (DSS) in drinking water for 6 d to induce ... AIM:To investigate the regulation of mindin expression and the signaling pathway involved during inflammation.METHODS:C57BL/6 mice were treated with 3% dextran sulfate sodium (DSS) in drinking water for 6 d to induce acute colitis,and then the colon was harvested for histological analysis or for RNA isolation.mRNA expression of mindin and nuclear factor (NF)-κB p65 was analyzed by quantitative real time polymerase chain reaction (RT-PCR) and mindin expression construct was conf irmed by Western blotting.Mouse macrophage and intestinal epithelial lineage cells were stimulated with different cytokines and toll-like receptor (TLR) ligands,before pNF-κB-luciferase activity was assessed using the Dual-Luciferase reporter assay system.RESULTS:mRNA expression of mindin was upregulated 4.7 ± 1.1 fold compared with the baseline during DSS-induced intestinal inflammation in the mice.Stimulation with CpG-ODN (a known TLR-9 ligand) induced 4.2 ± 0.3 fold upregulation of mindin expression in RAW 264.7 cells.Full-length of mindin was cloned from cDNA of mouse mesenteric lymph node,then the pCMV-Mindin-Flag expression vector was established and the protein expression level was confi rmed.Transfection of the mindin construct and stimulation with CpG-ODN signifi cantly increased the NF-κB-luciferase activity by 2.5 ± 0.3 and 4.5 ± 0.5 fold in RAW264.7 and CMT93 cells,respectively (P < 0.01).CONCLUSION:Mindin expression is upregulated during intestinal inflammation and may induce NF-κB promoter activation in a TLR-9 mediated manner. 展开更多
关键词 Mindin nuclear factor-κb promoter activity TOLL-LIKE receptor-9
下载PDF
Promising Effects of Zerumbone on the Regulation of Tumor-promoting Cytokines Induced by TNF-α-activated Fibroblasts 被引量:2
17
作者 Zahra Radaei Alireza Zamani +5 位作者 Rezvan Najafi Massoud Saidijam Farid Azizi Jalilian Razieh Ezati Ghasem Solgi Razieh Amini 《Current Medical Science》 SCIE CAS 2020年第6期1075-1084,共10页
Inflammation plays an important role in the development of several cancers.Inflammatory cytokines,including tumor necrosis factor-α(TNF-α),are associated with the induction of inflammation.Chronic inflammation contr... Inflammation plays an important role in the development of several cancers.Inflammatory cytokines,including tumor necrosis factor-α(TNF-α),are associated with the induction of inflammation.Chronic inflammation contributes to the progression of cancer through several mechanisms,including increased cytokine production and activation of transcription factors,such as nuclear factor-κB(NF-κB).Zerumbone(ZER),a component of subtropical ginger(Zingiber zerumbet Smith),seems to have anti-inflammatory,anti-cancer,and antioxidant activities.In this study,we aimed to explore the protective function and mechanisms of ZER against TNF-α-induced cancer-promoting cytokines.We found that the viability of stimulated human fibroblast cell lines was reduced after treatment with ZER(IC50=18µmol/L),compared to un-stimulated fibroblasts(IC50=40µmol/L).Besides,ZER inhibited mRNA expression and protein secretion of transforming growth factor-β(TGF-β),interleukin-33(IL-33),monocyte chemoattractant protein-1(MCP-1),and stromal cell-derived factor 1(SDF-1),which were produced by TNF-α-induced fibroblasts,as measured by quantitative real time-PCR(qRT-PCR)and ELISA assays.The mRNA expression levels of TGF-β,IL-33,SDF-1,and MCP-1 showed 8,5,2.5,and 4-fold reductions,respectively.Moreover,secretion of TGF-β,IL-33,SDF-1,and MCP-1 was reduced to 3.65±0.34 ng/mL,6.3±0.26,1703.6±295.2,and 5.02±0.18 pg/mL,respectively,compared to the untreated group.In addition,the conditioned media(CM)of TNF-α-stimulated fibroblasts increased the NF-κB expression in colorectal cancer cell lines(HCT-116 and Sw48),while in the vicinity of ZER,the expression of NF-κB was reversed.Considering the significant effects of ZER,this component can be used as an appropriate alternative herbal treatment for cancer-related chronic inflammation. 展开更多
关键词 INFLAMMATION zerumbone activated fibroblasts tumor necrosis factor-α(TNF-α) nuclear factor-κb(NF-κb)
下载PDF
CARMA3: A novel scaffold protein in regulation of NF-κB activation and diseases 被引量:2
18
作者 Jiyuan Sun, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, TX 77030, United States 《World Journal of Biological Chemistry》 CAS 2010年第12期353-361,共9页
CARD recruited membrane associated protein 3 (CARMA3) is a novel scaffold protein. It belongs to the CARMA protein family, and is known to activate nuclear factor (NF)- κB. However, it is still unknown which receptor... CARD recruited membrane associated protein 3 (CARMA3) is a novel scaffold protein. It belongs to the CARMA protein family, and is known to activate nuclear factor (NF)- κB. However, it is still unknown which receptor functions upstream of CARMA3 to trigger NF-κB activation. Recently, several studies have demonstrated that CARMA3 serves as an indispensable adaptor protein in NF-κB signaling under some G protein-coupled receptors (GP- CRs), such as lysophosphatidic acid (LPA) receptor and angiotensin (Ang) Ⅱ receptor. Mechanistically, CARMA3 recruits its essential downstream molecules Bcl10 and MALT1 to form the CBM (CARMA3-Bcl10-MALT1) signalosome whereby it triggers NF-κB activation. GPCRs and NF-κB play pivotal roles in the regulation of various cellular functions, therefore, aberrant regulation of the GPCR/NF-κB signaling axis leads to the development of many types of diseases, such as cancer and atherogenesis. Recently, the GPCR/CARMA3/NF-κB signaling axis has been confirmed in these specific diseases and it plays crucial roles in the pathogenesis of disease progression. In ovarian cancer cell lines, knockdown of CARMA3 abolishes LPA receptor-induced NF-κB activation, and reduces LPA-induced ovarian cancer invasion. In vascular smooth cells, downregulation of CARMA3 substantially impairs Ang-Ⅱ-receptor-induced NF-κB activation, and in vivo studies have confirmed that Bcl10- deficient mice are protected from developing Ang-Ⅱ-receptor-induced atherosclerosis and aortic aneurysms. In this review, we summarize the biology of CARMA3, describe the role of the GPCR/CARMA3/NF-κB signaling axis in ovarian cancer and atherogenesis, and speculate about the potential roles of this signaling axis in other types of cancer and diseases. With a significant increase in the identification of LPA- and Ang-Ⅱ-like ligands, such as endothelin-1, which also activates NF-κB via CARMA3 and contributes to the development of many diseases, CARMA3 is emerging as a novel therapeutic target for various types of cancer and other diseases. 展开更多
关键词 G protein-coupled receptor Β-ARRESTIN CARD recruited membrane associated protein 3 nuclear factor-κb Cancer ATHEROGENESIS
下载PDF
Down-regulation of peroxisome proliferator-activated receptor γ coactivator-1α expression in fatty acid-induced pancreatic betacell apoptosis involves nuclear factor-κB pathway 被引量:1
19
作者 HE Ting-ting CAO Xiao-pei CHEN Ru-zhu ZHU Xiao-nan WANG Xue-lan LI Yan-bing XIAO Hai-peng 《Chinese Medical Journal》 SCIE CAS CSCD 2011年第22期3657-3663,共7页
Background Pancreatic beta-cell apoptosis induced by lipotoxicity, to a large extent, contributes to the progression of type 2 diabetes. To investigate the mechanism of free fatty acid induced apoptosis, we aimed to s... Background Pancreatic beta-cell apoptosis induced by lipotoxicity, to a large extent, contributes to the progression of type 2 diabetes. To investigate the mechanism of free fatty acid induced apoptosis, we aimed to study the effects of palmitic acid (PA) on the apoptosis and peroxisome proliferator-activated receptor y coactivator-1α (PGC-1α) expression in βTC3 cells as well as the possible role of nuclear factor-KB (NF-KB) in this process. Methods Hoechst 33258 was used to detect βTC3 cell apoptosis, which was induced by PA stimulation for 12 hours. PGC-1α expression was analyzed by reverse transcription polymerase chain reaction, IκB kinase β (IKKβ), IκBα NF-KB-inducing kinase (NIK) and ReI-B expressions were analyzed by Western blotting. MGβ2 was employed to block the endogenous IκBαdegradation before PA administration, and then its effect on PA-inducing cell apoptosis and PGC-1α mRNA expression was analyzed. Results Significant increased cell apoptosis was found at the concentration of 0.5 mmol/L and 1.0 mmol/L PA administration. PA (0.5 mmol/L) could extensively reduced the expression of PGC-1α mRNA. After exposing βTC3 cells to 0.5 mmol/L PA for different time periods (0, 4, 6, 8, 10 and 12 hours), IKKβ protein expression increased while IκBα NIK and ReI-B protein expression declined in a time-dependent manner. Pretreatment with MGβ2 to inhibit the degradation of IκBα partially prevented the down-regulation of PGC-1α mRNA expression after 12-hour PA treatment in accordance with the decrease of PA induced apoptosis. Conclusions NF-KB canonical pathway was activated in PA-mediated βTC3 cell apoptosis, whereas non-canonical pathway was inhibited. Reduced PGC-1α expression by PA in βTC3 cells could involve the activation of canonical NF-KB pathway, so as to deteriorate the PA induced apoptosis. 展开更多
关键词 bETA-CELL apoptosis peroxisome proliferator-activated receptor 7 coactivator-1α nuclear factor-κb
原文传递
核因子κB受体活化因子配体抑制剂地舒单抗在肺癌骨转移中的应用 被引量:2
20
作者 罗详冲(综述) 王周清 +6 位作者 毛贵兵 安乐 朱家宏 陶娥红 孙丽飞 王胜飞 李高峰(审校) 《现代医药卫生》 2023年第7期1181-1185,共5页
目前,随着基因靶向治疗和免疫治疗在肺癌领域中取得巨大突破,晚期肺癌患者总生存期(OS)显著延长,但发生远处骨转移及骨相关事件(SRE),如骨痛、病理性骨折、脊髓压迫、高钙血症等风险也随之增大,严重影响了患者的生活质量。因此,在全身... 目前,随着基因靶向治疗和免疫治疗在肺癌领域中取得巨大突破,晚期肺癌患者总生存期(OS)显著延长,但发生远处骨转移及骨相关事件(SRE),如骨痛、病理性骨折、脊髓压迫、高钙血症等风险也随之增大,严重影响了患者的生活质量。因此,在全身治疗基础上应积极预防和治疗骨转移及SRE治疗。临床研究表明,核因子κB受体活化因子(RANK)配体(RANKL)/RANK/骨保护素信号通路在肿瘤骨转移中发挥着重要作用,阻断该通路能有效预防和治疗SRE。RANKL抑制剂地舒单抗(商品名:安加维)是一种人免疫球蛋白G2单克隆抗体,可特异性结合RANKL而阻断破骨细胞参与的RANKL/RANK/骨保护素信号通路激活,最终发挥预防骨转移及SRE的作用。与双磷酸盐类药物比较,地舒单抗疗效显著,能明显延长患者OS和SRE的发生时间。同时,地舒单抗还具有抗肿瘤作用。该文就地舒单抗的作用机制、临床研究及安全性等方面的最新研究进行了阐述,以期为临床医生提供参考。 展开更多
关键词 核因子κb受体活化因子配体抑制剂 地舒单抗 肺癌 骨转移 综述
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部