The parallel mechanisms have the disadvantage of small workspace and complication in kinematics and dynamics. An optimizing design for the parallel mechanisms can improve the motion performance relatively, but not gua...The parallel mechanisms have the disadvantage of small workspace and complication in kinematics and dynamics. An optimizing design for the parallel mechanisms can improve the motion performance relatively, but not guarantee the design results which satisfy the various practical requirements simultaneously. In this paper, a dynamical and optimal synthesis method is proposed for parallel mechanisms based on the dynamical reconfiguration technique. As a specific, application, the problem of optimizing the kinematics isotropy of a five-bar planar parallel mechanism is studied. The motion of a reconfigurable mechanism can be parted into two phases, the natural motion phase and the reconfiguration phase. The two motion phases can be studied by the same performance evaluation methodology. This points out from both theory and practices a novel method for improving the motion performance of the parallel mechanisms. Simulation by a symmetrical five-bar planar parallel manipulator shows some aspects of the investigations.展开更多
This paper presents the idea of constructing reconfigurable limbs by integrating metamorphic linkages as subchains.The planar five-bar metamorphic linkages that have three phases resulting from locking of motors are c...This paper presents the idea of constructing reconfigurable limbs by integrating metamorphic linkages as subchains.The planar five-bar metamorphic linkages that have three phases resulting from locking of motors are considered.Under the assumption that the constraint exerted by the reconfigurable limb can switch between no constraint,a constraint force,and a constraint couple,the output motions of the metamorphic linkage in its two planar four-bar linkage phases are identified.By adding an appropriate joint to planar four-bar linkages with translational output,four planar five-bar linkages that can be employed in the construction of reconfigurable limbs are enumerated.Serial chains that can provide a constraint couple and a constraint force are synthesized based on screw theory.Reconfigurable limbs that have three configurations associated with the three distinct phases of the metamorphic linkages are assembled with planar five-bar metamorphic linkages and serial chains with four degrees of freedom.A class of reconfigurable parallel mechanisms are constructed by connecting a moving platform and a base with three identical reconfigurable limbs.The degrees of freedom of the reconfigurable parallel mechanism in different configurations with the metamorphic linkages in different phases are given.Finally,the actuation scheme for this kind of mechanisms is addressed.展开更多
文摘The parallel mechanisms have the disadvantage of small workspace and complication in kinematics and dynamics. An optimizing design for the parallel mechanisms can improve the motion performance relatively, but not guarantee the design results which satisfy the various practical requirements simultaneously. In this paper, a dynamical and optimal synthesis method is proposed for parallel mechanisms based on the dynamical reconfiguration technique. As a specific, application, the problem of optimizing the kinematics isotropy of a five-bar planar parallel mechanism is studied. The motion of a reconfigurable mechanism can be parted into two phases, the natural motion phase and the reconfiguration phase. The two motion phases can be studied by the same performance evaluation methodology. This points out from both theory and practices a novel method for improving the motion performance of the parallel mechanisms. Simulation by a symmetrical five-bar planar parallel manipulator shows some aspects of the investigations.
基金supported by the National Natural Science Foundation of China(Grant Nos.51075025,51175029)Beijing Natural Science Foundation of China(Grant No.3132019)the Program for New Century Excellent Talents in University of China(Grant No.NCET-12-0769)
文摘This paper presents the idea of constructing reconfigurable limbs by integrating metamorphic linkages as subchains.The planar five-bar metamorphic linkages that have three phases resulting from locking of motors are considered.Under the assumption that the constraint exerted by the reconfigurable limb can switch between no constraint,a constraint force,and a constraint couple,the output motions of the metamorphic linkage in its two planar four-bar linkage phases are identified.By adding an appropriate joint to planar four-bar linkages with translational output,four planar five-bar linkages that can be employed in the construction of reconfigurable limbs are enumerated.Serial chains that can provide a constraint couple and a constraint force are synthesized based on screw theory.Reconfigurable limbs that have three configurations associated with the three distinct phases of the metamorphic linkages are assembled with planar five-bar metamorphic linkages and serial chains with four degrees of freedom.A class of reconfigurable parallel mechanisms are constructed by connecting a moving platform and a base with three identical reconfigurable limbs.The degrees of freedom of the reconfigurable parallel mechanism in different configurations with the metamorphic linkages in different phases are given.Finally,the actuation scheme for this kind of mechanisms is addressed.
文摘研究一种基于变胞铰链Ra(Reconfigurable axis)的新型3(Ra)PS变胞并联机构的可重构特性和统一运动学分析方法。根据约束螺旋系统表明,在一个构态下,(Ra)PS支链对平台没有约束,而在另一个构态下,通过改变可重构铰链Ra铰内轴线的位置,可以提供一个约束力。支链的两个构态使3(Ra)PS变胞并联机构具有4种构型,其中包括2R1T(2个旋转1个平移)、3R1T(3个旋转1个平移)、3R2T(3个旋转2个平移)和6 DOF(Degree of freedom)构型。根据支链两构态的差异,提出以一个支链构态作为另一个支链构态特例的统一运动学建模方法。在此基础上,建立3(Ra)PS变胞并联机构的驱动选择方案和可以包含4种构型的统一运动学模型。对逆运动学和正运动学进行求解,数值算例验证了理论结果的正确性。这种特殊类型的并联机构为特殊变胞机构的工作空间、路径规划和控制奠定了基础。