期刊文献+
共找到1,004篇文章
< 1 2 51 >
每页显示 20 50 100
The Mechanism of Heating Rate on the Secondary Recrystallization Evolution in Grain Oriented Silicon Steel
1
作者 GAO Qian LI Jun +3 位作者 WANG Xianhui CAO Laifu GONG Jian LI Bo 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期275-282,共8页
Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the... Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the Zener factor,the diameter and number density of precipitates of interrupted testing samples were statistically calculated.The effect of precipitate ripening on the Goss texture and magnetic property was investigated.Data indicated that the trend of Zener factor was similar under different heating rates,first increasing and then decreasing,and that the precipitate maturing was greatly inhibited as the heating rate increased.Secondary recrystallization was developed at the temperature of 1010℃when a heating rate of 5℃/h was used,resulting in Goss,Brass and{110}<227>oriented grains growing abnormally and a magnetic induction intensity of 1.90T.Furthermore,increasing the heating rate to 20℃/h would inhibit the development of undesirable oriented grains and obtain a sharp Goss texture.However,when the heating rate was extremely fast,such as 40℃/h,poor secondary recrystallization was developed with many island grains,corresponding to a decrease in magnetic induction intensity to 1.87 T.At a suitable heating rate of 20℃/h,the sharpest Goss texture and the highest magnetic induction of 1.94 T with an onset secondary recrystallization temperature of 1020℃were found among the experimental variables in this study.The heating rate affected the initial temperature of secondary recrystallization by controlling the maturation of precipitates,leading to the deviation and dispersion of Goss texture,thereby reducing the magnetic properties. 展开更多
关键词 high temperature annealing heating rate secondary recrystallization grain oriented silicon steel
原文传递
Multiple impacts of trace Tb addition on the secondary recrystallization andmagnetostriction of Fe–Ga thin sheet
2
作者 Jiande Liu Zhenghua He +4 位作者 Yuhui Sha Xiaofei Zhu Hongbo Hao Lijia Chen Liang Zuo 《International Journal of Minerals,Metallurgy and Materials》 2025年第4期902-914,共13页
Fe–Ga sheets with large magnetostriction are required for improving the conversion efficiency under the ultra-high frequencymagnetic field. Trace Tb element doping can simultaneously improve the magnetostriction and ... Fe–Ga sheets with large magnetostriction are required for improving the conversion efficiency under the ultra-high frequencymagnetic field. Trace Tb element doping can simultaneously improve the magnetostriction and ductility of Fe–Ga alloy. However, the im-pact of trace Tb doping on the microstructure and magnetostriction of Fe–Ga thin sheets is an open question. In this paper, the effects oftrace Tb addition on the secondary recrystallization and magnetostriction of Fe–Ga thin sheets are systematically studied by comparing thecharacteristics evolution of precipitation, texture, and nanoinclusions. The results indicate that trace Tb addition accelerates the secondaryrecrystallization of Goss texture due to the combined action of the bimodal size distributed precipitates, smaller grains, and more HEGBsin primary recrystallization. After quenching at 900℃, the magnetostriction value in 0.07 at %Tb-doped Fe_(81)Ga_(19) thin sheets increases by 30% to that of Fe_(81)Ga_(19) thin sheets. The increase in magnetostriction is attributed to the decrease in the number of Tb-rich precipitates andthe higher density of the nanometer-sized modified-D0_(3) inclusions induced by the dissolving of trace Tb elements after quenching. Theseresults demonstrate a simple and efficient approach for preparing Fe–Ga thin sheets with a large magnetostrictive coefficient by a combin-ation of trace RE element addition and conventional rolling method. 展开更多
关键词 magnetostriction alloy thin sheets RE dopant secondary recrystallization precipitate phase nanoheterogeneity.
下载PDF
Strain rate dependence of dynamic recrystallization and texture evolution in hot compressed Mg-Gd-Er-Zr alloy
3
作者 Ning Ding Wenbo Du +3 位作者 Shubo Li Ke Liu Xian Du Zijian Yu 《Journal of Magnesium and Alloys》 2025年第1期161-171,共11页
Hot deformation with high strain rate has been paid more attention due to its high efficiency and low cost,however,the strain rate dependent dynamic recrystallization(DRX)and texture evolution in hot deformation proce... Hot deformation with high strain rate has been paid more attention due to its high efficiency and low cost,however,the strain rate dependent dynamic recrystallization(DRX)and texture evolution in hot deformation process,which affect the formability of metals,are lack of study.In this work,the DRX behavior and texture evolution of Mg-8Gd-1Er-0.5Zr alloy hot compressed with strain rates of 0.1 s^(−1),1 s^(−1),10 s^(−1) and 50 s^(−1) are studied,and the corresponding dominant mechanisms for DRX and texture weakening are discussed.Results indicated the DRX fraction was 20%and the whole texture intensity was 16.89 MRD when the strain rate was 0.1 s^(−1),but they were 76%and 6.55 MRD,respectively,when the strain rate increased to 50 s^(−1).The increment of DRX fraction is suggested to result from the reduced DRX critical strain and the increased dislocation density as well as velocity,while the weakened whole texture is attributed to the increased DRX grains.At the low strain rate of 0.1 s^(−1),discontinuous DRX(DDRX)was the dominant,but the whole texture was controlled by the deformed grains with the preferred orientation of{0001}⊥CD,because the number of DDRX grains was limited.At the high strain rate of 50 s^(−1),continuous DRX(CDRX)and twin-induced DRX(TDRX)were promoted,and more DRX grains resulted in orientation randomization.The whole texture was mainly weakened by CDRX and TDRX grains,in which CDRX plays a major role.The results of present work are significant for understanding the hot workability of Mg-RE alloys with a high strain rate. 展开更多
关键词 Dynamic recrystallization Texture Hot compression Strain rate Mg-Gd-Er-Zr alloy
下载PDF
Understanding pyramidal slip-induced deformation bands and dynamic recrystallization in AZWX3100 magnesium alloy
4
作者 Risheng Pei Fatim-Zahra Mouhib +3 位作者 Mattis Seehaus Simon Arnoldi Pei-Ling Sun Talal Al-Samman 《Journal of Magnesium and Alloys》 2025年第3期1088-1098,共11页
Dynamic recrystallization(DRX)in inhomogeneous deformation zones,such as grain boundaries,shear bands,and deformation bands,is critical for texture modification in magnesium alloys during deformation at elevated temper... Dynamic recrystallization(DRX)in inhomogeneous deformation zones,such as grain boundaries,shear bands,and deformation bands,is critical for texture modification in magnesium alloys during deformation at elevated temperatures.This study investigates the DRX mechanisms in AZWX3100 magnesium alloy under plane strain compression at 200℃.Microstructural analysis revealed necklace-type DRX accompanied by evidence of local grain boundary bulging.Additionally,ribbons of recrystallized grains were observed withinfine deformation bands,aligned with theoretical pyramidal I and II slip traces derived from the matrix.The distribution of local misorientation within the deformed microstructure demonstrated a clear association between deformation bands and localized strain.Dislocation analysis of lamellar specimens extracted from two pyramidal slip bands revealed<c+a>dislocations,indicating a connection between<c+a>slip activation and the formation of deformation bands.Crystal plasticity simulations suggest that the orientation of deformation bands is responsible for the unique recrystallization texture of the DRX grains within these bands.The texture characteristics imply a progressive,glide-induced DRX mechanism.A fundamental understanding of the role of deformation bands in texture modification can facilitate future alloy and process design. 展开更多
关键词 Magnesium Channel die Dynamic recrystallization Texture modification Pyramidal slip
下载PDF
Unusual twin induced recrystallization and corresponding texture optimization in a cold rolled Mg-Gd-Zr alloy during annealing
5
作者 Ning Lv Lingyu Zhao +3 位作者 Hong Yan Boyu Liu Rongshi Chen Zhiwei Shan 《Journal of Magnesium and Alloys》 2025年第3期1099-1115,共17页
Twins play an important role in the texture transition during annealing.In a cold rolled high rare earth content magnesium(Mg)alloys with{10–12}extension twins,{11–21}extension twins,{10–11}compression twins and{10... Twins play an important role in the texture transition during annealing.In a cold rolled high rare earth content magnesium(Mg)alloys with{10–12}extension twins,{11–21}extension twins,{10–11}compression twins and{10–11}-{10–12}double twins and frequent twin-twin interactions,quasi-in-situ electron backscatter diffraction method was used to observe the twin induced static recrystallization(SRX)and related effect on texture during annealing.The results show that basal component was consumed owing to the SRX occurred in basal oriented{10–12}twins and SRXed grains with several specific orientations show preferential grain growth.SRX widely operated in the{10–12}extension and{11–21}extension twins,but absent in most{10–11}compression and{10–11}-{10–12}double twins,which is different to traditional twin induced SRX.Most compression/double twins detwinned while only partial tension twins detwinned.Operation of{11–21}twins and resultant twin-twin interaction facilitate the formation of serrated twin boundaries,which can serve as nucleation sites.Activation of<c+a>dislocation and related dislocation interaction in high dislocation density areas promote the formation of new grain boundaries and related SRX.Profuse<c+a>dislocations in basal oriented twins release the strain accumulation in compression/double twins and thus result in the absence of SRX.The twin size difference,storage energy and dislocation-twin interaction commonly functioned to the detwinning during annealing.The near-coincide site lattice boundaries that show high mobility were considered to be the important contributor to the preferential grain growth of SRXed grains. 展开更多
关键词 Magnesium alloy {11–21}twin TEXTURE Static recrystallization Detwinning
下载PDF
Hot deformation characteristics and dynamic recrystallization of Ti−6Al−4V−0.5Mo−0.5Zr alloy used for petroleum drill pipe
6
作者 Zhen-ni ZHOU Gao-yong LIN +3 位作者 Yu-hao AI Wei-zhong FENG Ping-hui ZHANG Hui-qun LIU 《Transactions of Nonferrous Metals Society of China》 2025年第2期486-498,共13页
The high-temperature compression deformation behavior of Ti−6Al−4V−0.5Mo−0.5Zr alloy was investigated at temperatures from 890 to 1030℃ and strain rates from 0.01 to 10 s^(−1),and the corresponding dynamic recrystall... The high-temperature compression deformation behavior of Ti−6Al−4V−0.5Mo−0.5Zr alloy was investigated at temperatures from 890 to 1030℃ and strain rates from 0.01 to 10 s^(−1),and the corresponding dynamic recrystallization(DRX)mechanism was revealed.The results indicate that under different deformation conditions,the intensity of flow stress oscillations varied significantly.During thermal deformation in theα+βphase region,the stress−strain curves exhibited DRX.At temperatures below 950℃,continuous dynamic recrystallization(CDRX)of theαgrains and fracturing of the strip-like phase were apparent.At temperature higher than 950℃,theβphase and a part of secondaryαcolonies underwent DRX. 展开更多
关键词 titanium alloy stress-strain curves stress oscillation dynamic recrystallization
下载PDF
Microstructural evolution and dynamic recrystallization mechanisms of additively manufactured TiAl alloy with heterogeneous microstructure during hot compression 被引量:1
7
作者 Hui TAO Hui-zhong LI +5 位作者 Jia-hui LI Li WANG Wei-wei HE Xiao-fen TAN Rui ZHOU Xiao-peng LIANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3208-3220,共13页
Microstructural evolution and dynamic recrystallization(DRX)mechanisms of a Ti-48Al-2Cr-2Nb(at.%)alloy prepared by selective electron beam melting(SEBM)during hot deformation at 1150℃and 0.1 s^(-1)were investigated b... Microstructural evolution and dynamic recrystallization(DRX)mechanisms of a Ti-48Al-2Cr-2Nb(at.%)alloy prepared by selective electron beam melting(SEBM)during hot deformation at 1150℃and 0.1 s^(-1)were investigated by hot compression tests,optical microscope(OM),scanning electron microscope(SEM),electron back-scattered diffraction(EBSD)and transmission electron microscope(TEM).The results show that the initial microstructure of the as-SEBMed alloy exhibits layers of coarseγgrains and fineγ+α_(2)+(α_(2)/γ)lamellar mixture grains alternately along the building direction.During the early stage of hot deformation,deformation twins tend to form within the coarse grains,facilitating subsequent deformation,and a small number of DRX grains appear in the fine-grained regions.With the increase of strain,extensive DRX grains are formed through different DRX mechanisms in both coarse and fine-grained regions,involving discontinuous dynamic recrystallization mechanism(DDRX)in the fine-grained regions and a coexistence of DDRX and continuous dynamic recrystallization(CDRX)in the coarsegrained regions. 展开更多
关键词 TiAl alloy selective electron beam melting heterogeneous microstructure discontinuous dynamic recrystallization(DDRX) continuous dynamic recrystallization(CDRX)
下载PDF
Simulation of Dynamic Recrystallization in 7075 Aluminum Alloy Using Cellular Automaton 被引量:1
8
作者 赵晓东 SHI Dongxing +3 位作者 李亚杰 QIN Fengming CHU Zhibing YANG Xiaorong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期425-435,共11页
The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys.We have developed a cellular automaton(CA) based model to simulate the microstructural evolution... The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys.We have developed a cellular automaton(CA) based model to simulate the microstructural evolution in 7075 aluminum alloy during hot deformation.Isothermal compression tests were conducted to obtain material parameters for 7075 aluminum alloy,leading to the establishment of models for dislocation density,nucleation of recrystallized grains,and grain growth.Integrating these aspects with grain topological deformation,our CA model effectively predicts flow stress,dynamic recrystallization(DRX) volume fraction,and average grain size under diverse deformation conditions.A systematic comparison was made between electron back scattered diffraction(EBSD) maps and CA model simulated under different deformation temperatures(573 to 723 K),strain rates(0.001 to 1 s^(-1)),and strain amounts(30% to 70%).These analyses indicate that large strain,high temperature,and low strain rate facilitate dynamic recrystallization and grain refinement.The results from the CA model show good accuracy and predictive capability,with experimental error within 10%. 展开更多
关键词 cellular automaton dynamic recrystallization 7075 aluminum alloy hot compression
原文传递
Effect of deformation parameters on the austenite dynamic recrystallization behavior of a eutectoid pearlite rail steel 被引量:1
9
作者 Haibo Feng Shaohua Li +7 位作者 Kexiao Wang Junheng Gao Shuize Wang Haitao Zhao Zhenyu Han Yong Deng Yuhe Huang Xinping Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期833-841,共9页
Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels.In this work,the au... Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels.In this work,the austenite dynamic recrystallization(DRX)behaviors of a eutectoid pearlite rail steel were studied using a thermo-mechanical simulator with hot deformation parameters frequently employed in rail production lines.The single-pass hot deformation results reveal that the prior austenite grain sizes(PAGSs)for samples with different deformation reductions decrease initially with an increase in deformation temperature.However,once the deformation temperature is beyond a certain threshold,the PAGSs start to increase.It can be attributed to the rise in DRX volume fraction and the increase of DRX grain with deformation temperature,respectively.Three-pass hot deformation results show that the accumulated strain generated in the first and second deformation passes can increase the extent of DRX.In the case of complete DRX,PAGS is predominantly determined by the deformation temperature of the final pass.It suggests a strategic approach during industrial production where part of the deformation reduction in low temperature range can be shifted to the medium temperature range to release rolling mill loads. 展开更多
关键词 eutectoid pearlite rail steel prior austenite grain size dynamic recrystallization single-pass hot deformation three-pass hot deformation
下载PDF
An in-situ study of static recrystallization in Mg using high temperature EBSD
10
作者 Xu Ye Zhe Suo +5 位作者 Zhonghao Heng Biao Chen Qiuming Wei Junko Umeda Katsuyoshi Kondoh Jianghua Shen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1419-1430,共12页
It has been a common method to improve the mechanical properties of metals by manipulating their microstructures via static recrystallization,i.e.,through heat treatment.Therefore,the knowledge of recrystallization an... It has been a common method to improve the mechanical properties of metals by manipulating their microstructures via static recrystallization,i.e.,through heat treatment.Therefore,the knowledge of recrystallization and grain growth is critical to the success of the technique.In the present work,by using in-situ high temperature EBSD,the mechanisms that control recrystallization and grain growth of an extruded pure Mg were studied.The experimental results revealed that the grains of priority for dynamic recrystallization exhibit fading competitiveness under static recrystallization.It is also found that grain boundary movement or grain growth is likely to show an inverse energy gradient effect,i.e.,low energy grains tend to swallow or grow into high energy grains,and grain boundaries of close to 30°exhibit superior growth advantage to others.Another finding is that{10-12}tensile twin boundaries are sites of hardly observed for recrystallization,and are finally swallowed by adjacent recrystallized grains.The above findings may give comprehensive insights of static recrystallization and grain growth of Mg,and may guide the design of advanced materials processing in microstructural engineering. 展开更多
关键词 Pure Mg IN-SITU HT-EBSD recrystallization Grain growth
下载PDF
Promoting dynamic recrystallization and improving strength and ductility of Mg-7Bi alloy through Al addition
11
作者 Gun Woong An Sang-Cheol Jin +2 位作者 Hyun Ji Kim Sumi Jo Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3339-3356,共18页
This study investigated the influence of the addition of Al to a Mg-7Bi(B7,wt%)alloy,particularly its recrystallization behavior during extrusion and its resulting mechanical properties.The addition of 2 wt%Al to the ... This study investigated the influence of the addition of Al to a Mg-7Bi(B7,wt%)alloy,particularly its recrystallization behavior during extrusion and its resulting mechanical properties.The addition of 2 wt%Al to the B7 alloy resulted in a lower grain size,a reduction in the number density of fine Mg3Bi2 particles,and a higher area fraction of relatively coarse Mg3Bi2 particles in the extrusion billet.These microstructural changes increased the nucleation sites for recrystallization,reduced the Zener pinning effect,and enhanced particle-stimulated nucleation,all of which promoted dynamic recrystallization behavior during extrusion.As a result,the area fraction of recrystallized grains in the extruded alloy increased from 77%to 94%.The extruded B7 alloy exhibited a strong<10-10>fiber texture,whereas the extruded Mg-7Bi-2Al(BA72)alloy had a weak<10-10>-<2-1-10>texture,which was attributed to the minimal presence of unrecrystallized grains and the dispersed orientation of the recrystallized grains.The tensile yield strength(TYS)of the extruded BA72 alloy was higher than that of the extruded B7 alloy(170 and 124 MPa,respectively),which resulted from the enhanced grain-boundary and solid-solution strengthening effects.The tensile elongation(EL)of the BA72 alloy also exceeded that of the B7 alloy(20.3%and 6.1%,respectively),the result of the uniform formation of fine twins under tension in the former and the formation of a few coarse twins among the unrecrystallized grains in the latter.Consequently,the addition of a small amount of Al to the B7 alloy significantly improved both the strength and ductility of the extruded alloy,resulting in a remarkable increase in the product of the TYS and EL from 756 to 3451 MPa%and expanding its potential range of applications as a lightweight extruded structural component. 展开更多
关键词 Mg-7Bi alloy Al addition Extrusion recrystallization Microstructure
下载PDF
Beam oscillating parameters on pore inhibition,recrystallization and grain boundary characteristics of laser-arc hybrid welded AZ31 magnesium alloy
12
作者 Kangda Hao Yongkang Gao +4 位作者 Lianyong Xu Yongdian Han Lei Zhao Wenjin Ren Hongyang Jing 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2489-2502,共14页
Oscillating laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of beam oscillation parameters on pore inhibition,microstructure,grain boundary characteristics and tensile properties were inv... Oscillating laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of beam oscillation parameters on pore inhibition,microstructure,grain boundary characteristics and tensile properties were investigated.The results showed that the pore formation can be inhibited with oscillating frequency higher than 75 Hz and radius smaller than 0.5 mm.The columnar grains neighboring the fusion line can be broken by the beam oscillation behavior,while the grain growth was promoted with the increase of frequency or radius.It should be noted that the coincidence site lattice(CSL)boundaries were mainlyΣ13b andΣ29 boundaries,which were contributed by{10■2}tensile twins and{11■2}compression twins,respectively.The total fraction of CSL boundaries reached maximum at radius of 0.25 mm and frequency of 75 Hz,which was also confirmed as the optimized parameters.In this case,the elongation rate increased up to 13.2%,12.8%higher than that of the weld without beam oscillation.Finally,the pore formation and inhibition mechanisms were illustrated according to the state of melt flow and keyhole formation,the abnormal growth was discussed basing on secondary recrystallization,and the relationship among the pore formation,grain size,boundary characteristics and weld toughness were finally established. 展开更多
关键词 Magnesium alloy Laser-arc hybrid welding Beam oscillation recrystallization Mechanical properties
下载PDF
{1012}twin–twin intersection-induced lattice rotation and dynamic recrystallization in Mg–6Al–3Sn–2Zn alloy
13
作者 Bin-Jiang Lv Sen Wang +4 位作者 Fu-Hao Gao Ning Cui Yi-Nan Li Tie-Wei Xu Feng Guo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1529-1539,共11页
This study investigated the formation mechanism of new grains due to twin–twin intersections in a coarse-grained Mg–6Al–3Sn–2Zn alloy during different strain rates of an isothermal compression.The results of elect... This study investigated the formation mechanism of new grains due to twin–twin intersections in a coarse-grained Mg–6Al–3Sn–2Zn alloy during different strain rates of an isothermal compression.The results of electron backscattered diffraction investigations showed that the activated twins were primarily{1012}tension twins,and 60°<1010>boundaries formed due to twin–twin intersections under different strain rates.Isolated twin variants with 60°<1010>boundaries transformed into new grains through lattice rotations at a low strain rate(0.01 s^(−1)).At a high strain rate(10 s^(−1)),the regions surrounded by subgrain boundaries through high-density dislocation arrangement and the 60°<1010>boundaries transformed into new grains via dynamic recrystallization. 展开更多
关键词 Mg alloy Twin-twin intersection Lattice rotation Dynamic recrystallization
下载PDF
Modeling of recrystallization behaviour of AA6xxx aluminum alloy during extrusion process
14
作者 Marco NEGOZIO Antonio SEGATORI +3 位作者 Riccardo PELACCIA Barbara REGGIANI Sara Di DONATO Lorenzo DONATI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3170-3184,共15页
An innovative approach was introduced for the development of a AA6063 recrystallization model.This method incorporated a regression-based technique for the determination of material constants and introduced novel equa... An innovative approach was introduced for the development of a AA6063 recrystallization model.This method incorporated a regression-based technique for the determination of material constants and introduced novel equations for assessing the grain size evolution.Calibration and validation of this methodology involved a combination of experimentally acquired microstructural data from the extrusion of three different AA6063 profiles and results from the simulation using the Qform Extrusion UK finite element code.The outcomes proved the agreement between experimental findings and numerical prediction of the microstructural evolution.The trend of the grain size variation based on different process parameters was accurately simulated,both after dynamic and static recrystallization,with an error of less than 25% in almost the whole sampling computations. 展开更多
关键词 recrystallization simulation aluminum alloy extrusion finite element method microstructure prediction
下载PDF
High temperature deformation and recrystallization behavior of magnesium bicrystals with 90°<1010>and 90°<1120>tilt grain boundaries
15
作者 Kevin Bissa Talal Al-Samman Dmitri A.Molodov 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期625-638,共14页
The deformation mechanisms and dynamic recrystallization(DRX)behavior of specifically grown bicrystals with a symmetric 90°<1010>and 90°<1120>tilt grain boundary,respectively,were investigated un... The deformation mechanisms and dynamic recrystallization(DRX)behavior of specifically grown bicrystals with a symmetric 90°<1010>and 90°<1120>tilt grain boundary,respectively,were investigated under deformation in plane strain compression at 200℃and 400℃.The microstructures were analyzed by panoramic optical microscopy and large-area electron backscatter diffraction(EBSD)orientation mapping.The analysis employed a meticulous approach utilizing hundreds of individual,small EBSD maps with a small step size that were stitched together to provide comprehensive access to orientation and misorientation data on a macroscopic scale.Basal slip primarily governed the early stages of deformation at the two temperatures,and the resulting shear induced lattice rotation around the transverse direction(TD)of the sample.The existence of the grain boundary gave rise to dislocation pile-up in its vicinity,leading to much larger TD-lattice rotations within the boundary region compared to the bulk.With increasing temperature,the deformation was generally more uniform towards the bulk due to enhanced dislocation mobility and more uniform stress distribution.Dynamic recrystallization at 200℃was initiated in{1011}-compression twins at strains of 40%and higher.At 400℃,DRX consumed the entire grain boundary region and gradually replaced the deformed microstructure with progressing deformation.The recrystallized grains displayed characteristic orientations,such that their c-axes were perpendicular to the TD and additionally scattered between 0°and 60°from the loading axis.These recrystallized grains displayed mutual rotations of up to 30°around the c-axes of the initial grains,forming a discernible basal fiber texture component,prominently visible in the{1120}pole figure.It is noteworthy that the deformation and DRX behaviors of the two analyzed bicrystals exhibited marginal variations in response to strain and deformation temperature. 展开更多
关键词 Elevated deformation temperatures Plain strain compression Magnesium bicrystals Panorama EBSD Dynamic recrystallization
下载PDF
Influence of thermomechanical treatment on recrystallization and softening resistance of Cu-6.5Fe-0.3Mg alloy
16
作者 Zhen-xia LIU Da-wei YUAN +5 位作者 Xin LUO Lan-hao WANG Jin-shui CHEN Hui-ming CHEN Xiang-peng XIAO Bin YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2900-2917,共18页
The recrystallization and softening resistance of a Cu-6.5Fe-0.3Mg(mass fraction,%)alloy prepared by Process 1(cold rolling heat treatment)and Process 2(hot/cold rolling heat treatment)were studied using Vickers hardn... The recrystallization and softening resistance of a Cu-6.5Fe-0.3Mg(mass fraction,%)alloy prepared by Process 1(cold rolling heat treatment)and Process 2(hot/cold rolling heat treatment)were studied using Vickers hardness tests,tensile tests,scanning electron microscopy and transmission electron microscopy.The softening temperature,hardness and tensile strength of the alloy prepared by Process 2 were 110°C,HV 15 and 114 MPa higher,respectively,than those of the alloy prepared by Process 1 after aging at 300°C.The recrystallization activation energy of the alloys prepared by Process 1 and Process 2 were 72.83 and 98.11 kJ/mol,respectively.The pinning effects of the precipitates of the two alloys on grain boundaries and dislocations were basically the same.The softening mechanism was mainly attributed to the loss of dislocation strengthening.The higher Fe fiber density inhibited the average free migration path of dislocations and grain boundary migration in the alloy,which was the main reason for higher softening temperature of the alloy prepared by Process 2. 展开更多
关键词 Cu−6.5Fe−0.3Mg alloy hot rolling recrystallization activation energy softening mechanism dislocation strengthening
下载PDF
Simulated and experimental investigation on discontinuous dynamic recrystallization of a near-α TA15 titanium alloy during isothermal hot compression in βsingle-phase field 被引量:5
17
作者 武川 杨合 李宏伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1819-1829,共11页
A cellular automaton(CA) modeling of discontinuous dynamic recrystallization(DDRX) of a near-α Ti-6Al-2Zr-1Mo-1V(TA15) isothermally compressed in the β single phase field was presented.In the CA model,nucleati... A cellular automaton(CA) modeling of discontinuous dynamic recrystallization(DDRX) of a near-α Ti-6Al-2Zr-1Mo-1V(TA15) isothermally compressed in the β single phase field was presented.In the CA model,nucleation of the β-DDRX and the growth of recrystallized grains(re-grains) were considered and visibly simulated by the CA model.The driving force of re-grain growth was provided by dislocation density accumulating around the grain boundaries.To verify the CA model,the predicted flow stress by the CA model was compared with the experimental data.The comparison showed that the average relative errors were10.2%,10.1%and 6%,respectively,at 1.0,0.1 and 0.01 s^-1 of 1020 ℃,and were 10.2%,11.35%and 7.5%,respectively,at 1.0,0.1and 0.01 s^-1 of 1050 ℃.The CA model was further applied to predicting the average growth rate,average re-grain size and recrystallization kinetics.The simulated results showed that the average growth rate increases with the increasing strain rate or temperature,while the re-grain size increases with the decreasing strain rate;the volume fraction of recrystallization decreases with the increasing strain rate or decreasing temperature. 展开更多
关键词 discontinuous dynamic recrystallization cellular automaton dislocation density evolution recrystallization kinetics TA15 titanium alloy
下载PDF
Modeling of strain hardening and dynamic recrystallization of ZK60 magnesium alloy during hot deformation 被引量:11
18
作者 何运斌 潘清林 +3 位作者 陈琴 张志野 刘晓艳 李文斌 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期246-254,共9页
The flow stress behavior of ZK60 alloy at elevated temperature was investigated. The strain hardening and dynamic recrystallization of the alloy were modeled by Kocks-Meching model and Avrami equation, respectively. A... The flow stress behavior of ZK60 alloy at elevated temperature was investigated. The strain hardening and dynamic recrystallization of the alloy were modeled by Kocks-Meching model and Avrami equation, respectively. A new constitutive equation during hot deformation was constructed to predict the flow stress considering the dynamic recrystallization. The results show that the flow stress curves predicted by the proposed equation have high correlation coefficients with the experimental data, which confirms that the developed model is accurate and effective to establish the flow stress equation of ZK60 magnesium alloy during hot deformation. Microstructure observation shows that dynamic recovery occurs in the initial stage of hot deformation. However, the microstructure turns to recrvstallization structure as the strain increases. 展开更多
关键词 magnesium alloys flow stress strain hardening dynamic recrystallization hot deformation
下载PDF
Dynamic recrystallization behavior of 7085 aluminum alloy during hot deformation 被引量:12
19
作者 李东锋 张端正 +4 位作者 刘胜胆 单朝军 张新明 王琴 韩素琦 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1491-1497,共7页
The dynamic recrystallization behavior of 7085 aluminum alloy during hot compression at various temperatures (573?723 K) and strain rates (0.01-10 s^-1) was studied by electron back scattered diffraction (EBSD... The dynamic recrystallization behavior of 7085 aluminum alloy during hot compression at various temperatures (573?723 K) and strain rates (0.01-10 s^-1) was studied by electron back scattered diffraction (EBSD), electro-probe microanalyzer (EPMA) and transmission electron microscopy (TEM). It is shown that dynamic recovery is the dominant softening mechanism at high Zener?Hollomon (Z) values, and dynamic recrystallization tends to appear at low Z values. Hot compression with ln Z=24.01 (723 K, 0.01 s?1) gives rise to the highest fraction of recrystallization of 10.2%. EBSD results show that the recrystallized grains are present near the original grain boundaries and exhibit similar orientation to the deformed grain. Strain-induced boundary migration is likely the mechanism for dynamic recrystallization. The low density of Al3Zr dispersoids near grain boundaries can make contribution to strain-induced boundary migration. 展开更多
关键词 aluminum alloy Zener-Hollomon parameter dynamic recrystallization strain-induced boundary migration Al3Zr dispersoids
下载PDF
Simulation on dynamic recrystallization behavior of AZ31 magnesium alloy using cellular automaton method coupling Laasraoui Jonas model 被引量:9
20
作者 刘筱 李落星 +3 位作者 何凤亿 周佳 朱必武 张立强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2692-2699,共8页
The dynamic recrystallization (DRX) process of AZ31 magnesium alloy including microstructure and dislocation density evolution during hot compression was simulated by adopting the cellular automaton (CA) method co... The dynamic recrystallization (DRX) process of AZ31 magnesium alloy including microstructure and dislocation density evolution during hot compression was simulated by adopting the cellular automaton (CA) method coupling the Laasraoui-Jonas model (LJ model). The reliability of simulation depended on the accuracy of the hardening parameter, the recovery parameter and the strain rate sensitivity in the LJ model. The hardening parameter was calculated in terms of the LJ model and the Kocks-Mecking model (KM model), and then the recovery parameter and the strain rate sensitivity were obtained by using the equation of steady state flow stress for DRX. Good agreements between the simulations and the experimental observations were achieved. 展开更多
关键词 AZ31 magnesium alloy dynamic recrystallization MICROSTRUCTURE SIMULATION
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部