Reinforced concrete (RC) columns lacking adequately detailed transverse reinforcement do not possess the necessary ductility to dissipate seismic energy during a major earthquake without severe strength degradation....Reinforced concrete (RC) columns lacking adequately detailed transverse reinforcement do not possess the necessary ductility to dissipate seismic energy during a major earthquake without severe strength degradation. In this paper, a new retrofit method, which utilized fiber-reinforced plastics (FRP) confinement mechanism and anchorage of embedded bars, was developed aiming to retrofit non-ductile large RC rectangular columns to prevent the damage of the plastic hinges. Carbon FRP (CFRP) sheets and glass FRP (GFRP) bars were used in this test, and five scaled RC columns were tested to examine the function of this new method for improving the ductility of columns. Responses of columns were examined before and after being retrofitted. Test results indicate that this new composite method can be very effective to improve the anti-seismic behavior of non-ductile RC columns compared with normal CFRP sheets retrofitted column.展开更多
The behavior of slender columns under the effect of eccentric loading has always taken the attention of researchers. When investigating the strengthening of reinforced concrete columns, mainly short and circular colum...The behavior of slender columns under the effect of eccentric loading has always taken the attention of researchers. When investigating the strengthening of reinforced concrete columns, mainly short and circular columns are the targeted elements. This is why the data about slender columns with rectangular sections is limited and infrequent specially when loaded eccentrically. This paper aims to increase the available experimental data in this specific area. The experimental program consisted of twenty seven specimens. The specimens were divided into three groups; one control group and two groups strengthened using two strengthening schemes. Scheme 1 implied the use of near surface mounted (NSM) longitudinal steel bars, while in scheme 2, NSM longitudinal steel bars partially wrapped with one ply of carbon fibers reinforced polymers (CFRP) sheets was used. The test specimen had an overall length of 2000 mm and a 100 x 200 mm rectangular cross section. In addition to the strengthening schemes, the test parameters included three ratios for the internal longitudinal steel bars "μ" 1%, 1.57% and 2.26%. The parameters were extended to cover three stirrups' volumetric ratio "ρv" 0.73%, 0.49% and 0.37%. The specimens were tested under the effect of eccentric loading with eccentricity-to-section height e/h equals 0.25. The research revealed that the strength gain in specimens strengthened with scheme 2 was higher than with scheme 1. Analytical modeling of the stress strain relation of the strengthened RC columns considering the effect of strengthening scheme, internal reinforcement ratio μ, and stirrups' volumetric ratio "ρv" was proposed. Verification was made using available experimental data. The proposed model showed a reasonable agreement with the experimental results.展开更多
An experimental study on concrete filled steel tube columns with rectangular section subjected to compressionflexure-torsion combined action has been carried out. The failure modes and load-deformation hysteretic rela...An experimental study on concrete filled steel tube columns with rectangular section subjected to compressionflexure-torsion combined action has been carried out. The failure modes and load-deformation hysteretic relations were obtained. Based on the principles of classical material mechanics, the relations between the torsion curvature of the section and the shear strain of the fiber on the section were established. Then the strain distribution on the rectangular section of concrete filled steel tube columns subjected to torsion was analyzed. The three-dimensional refined finite element model was also built, in order to make the precision verification. The matrix forms of the relation between the torsion curvature of the section and the shear strain of the fiber on the section were derived, and introduced into the fiber beam model considering nonlinear torsion effect on the section. The comparison between test results and calculation results showed that the fiber beam model considering nonlinear torsion effect had high modeling efficiency and solution precision for predicting the torsion behavior of concrete filled steel tube columns with rectangular sections, and was suitable for analyzing the dynamic response of various structures subjected to the combined cyclic load caused by the earthquake load.展开更多
The plastic post-buckling of a simply supported column with a solid rectangularcross-section is analysed by a new approach. High order terms in the asymptotic post-buckling expansions are carried out. In some aspect...The plastic post-buckling of a simply supported column with a solid rectangularcross-section is analysed by a new approach. High order terms in the asymptotic post-buckling expansions are carried out. In some aspects, the method proposed in thispaper is similar io Hutchinson's. However, the computation is simple since theintroduction is avoided of stretched coordinates. The method can be used to analyseinitial post-bifurcation of plates and shells in the plastic range.展开更多
To investigate the bilateral shear strength of rectangular frame column subjected to oblique horizontal load, we presented a simplified space truss-arch model developed from unilateral truss-arch model. Main parameter...To investigate the bilateral shear strength of rectangular frame column subjected to oblique horizontal load, we presented a simplified space truss-arch model developed from unilateral truss-arch model. Main parameters in the new model were the cross-sectional area, transverse reinforcement raito, axial load, and material strength of the column. The reduction coefficient of concrete sterength owing to the severe cracking of column was also introduced in the model. Finally, 14 specimens under oblique horizontal load were tested to verified the feasibility and applicability of the space truss-arch model.展开更多
A kind of concrete-filled lattice rectangular steel tube(CFLRST)column was put forward.The numerical simulation was modeled to analyze the mechanical characteristic of CFLRST column.By comparing the load-deformation c...A kind of concrete-filled lattice rectangular steel tube(CFLRST)column was put forward.The numerical simulation was modeled to analyze the mechanical characteristic of CFLRST column.By comparing the load-deformation curves from the test results,the rationality and reliability of the finite element model has been confirmed,moreover,the change of the section stiffness and stress in the forcing process and the ultimate bearing capacity of the column were analyzed.Based on the model,the comparison of ultimate bearing capacity and ductility between CFLRST column and reinforced concrete(RC)column were also analyzed.The results of the finite element analysis show that the loading process of CFLRST column consists of elastic stage,yield stage and failure stage.The failure modes are mainly strength failure and failure of elastoplastic instability.CFLRST column has higher bearing capacities in comparison with reinforced concrete columns with the same steel ratio.In addition,the stiffness degeneration of CFLRST column is slower than RC column and CFLRST column has good ductility.展开更多
基金Project supported by the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No.07QA14025).Acknowledgment The authors thank Dr. WU Yu-fei, the assistant professor of the City University of Hong Kong for providing good suggestion and help during the test. This research was also supported by the grant from the Research Grant Council of the Hong Kong Special Administrative Region (Grant No.Cityu1113/04E).
文摘Reinforced concrete (RC) columns lacking adequately detailed transverse reinforcement do not possess the necessary ductility to dissipate seismic energy during a major earthquake without severe strength degradation. In this paper, a new retrofit method, which utilized fiber-reinforced plastics (FRP) confinement mechanism and anchorage of embedded bars, was developed aiming to retrofit non-ductile large RC rectangular columns to prevent the damage of the plastic hinges. Carbon FRP (CFRP) sheets and glass FRP (GFRP) bars were used in this test, and five scaled RC columns were tested to examine the function of this new method for improving the ductility of columns. Responses of columns were examined before and after being retrofitted. Test results indicate that this new composite method can be very effective to improve the anti-seismic behavior of non-ductile RC columns compared with normal CFRP sheets retrofitted column.
文摘The behavior of slender columns under the effect of eccentric loading has always taken the attention of researchers. When investigating the strengthening of reinforced concrete columns, mainly short and circular columns are the targeted elements. This is why the data about slender columns with rectangular sections is limited and infrequent specially when loaded eccentrically. This paper aims to increase the available experimental data in this specific area. The experimental program consisted of twenty seven specimens. The specimens were divided into three groups; one control group and two groups strengthened using two strengthening schemes. Scheme 1 implied the use of near surface mounted (NSM) longitudinal steel bars, while in scheme 2, NSM longitudinal steel bars partially wrapped with one ply of carbon fibers reinforced polymers (CFRP) sheets was used. The test specimen had an overall length of 2000 mm and a 100 x 200 mm rectangular cross section. In addition to the strengthening schemes, the test parameters included three ratios for the internal longitudinal steel bars "μ" 1%, 1.57% and 2.26%. The parameters were extended to cover three stirrups' volumetric ratio "ρv" 0.73%, 0.49% and 0.37%. The specimens were tested under the effect of eccentric loading with eccentricity-to-section height e/h equals 0.25. The research revealed that the strength gain in specimens strengthened with scheme 2 was higher than with scheme 1. Analytical modeling of the stress strain relation of the strengthened RC columns considering the effect of strengthening scheme, internal reinforcement ratio μ, and stirrups' volumetric ratio "ρv" was proposed. Verification was made using available experimental data. The proposed model showed a reasonable agreement with the experimental results.
文摘An experimental study on concrete filled steel tube columns with rectangular section subjected to compressionflexure-torsion combined action has been carried out. The failure modes and load-deformation hysteretic relations were obtained. Based on the principles of classical material mechanics, the relations between the torsion curvature of the section and the shear strain of the fiber on the section were established. Then the strain distribution on the rectangular section of concrete filled steel tube columns subjected to torsion was analyzed. The three-dimensional refined finite element model was also built, in order to make the precision verification. The matrix forms of the relation between the torsion curvature of the section and the shear strain of the fiber on the section were derived, and introduced into the fiber beam model considering nonlinear torsion effect on the section. The comparison between test results and calculation results showed that the fiber beam model considering nonlinear torsion effect had high modeling efficiency and solution precision for predicting the torsion behavior of concrete filled steel tube columns with rectangular sections, and was suitable for analyzing the dynamic response of various structures subjected to the combined cyclic load caused by the earthquake load.
文摘The plastic post-buckling of a simply supported column with a solid rectangularcross-section is analysed by a new approach. High order terms in the asymptotic post-buckling expansions are carried out. In some aspects, the method proposed in thispaper is similar io Hutchinson's. However, the computation is simple since theintroduction is avoided of stretched coordinates. The method can be used to analyseinitial post-bifurcation of plates and shells in the plastic range.
基金Funded by Natural Science Foundation of Henan Province Office of Education (No. 2009A560007)Doctor Foundation of Henan Polytechnic University (No. B2008-7)
文摘To investigate the bilateral shear strength of rectangular frame column subjected to oblique horizontal load, we presented a simplified space truss-arch model developed from unilateral truss-arch model. Main parameters in the new model were the cross-sectional area, transverse reinforcement raito, axial load, and material strength of the column. The reduction coefficient of concrete sterength owing to the severe cracking of column was also introduced in the model. Finally, 14 specimens under oblique horizontal load were tested to verified the feasibility and applicability of the space truss-arch model.
基金This work was financially supported by the Fundamental Research Funds for the Central Universities(JUSRP11819),National Natural Science Foundation of China through Grant 51378240,2015 Jiangsu provincial building energy saving and construction industry science and technology project,2016 Jiangsu provincial construction industry modernization base project.
文摘A kind of concrete-filled lattice rectangular steel tube(CFLRST)column was put forward.The numerical simulation was modeled to analyze the mechanical characteristic of CFLRST column.By comparing the load-deformation curves from the test results,the rationality and reliability of the finite element model has been confirmed,moreover,the change of the section stiffness and stress in the forcing process and the ultimate bearing capacity of the column were analyzed.Based on the model,the comparison of ultimate bearing capacity and ductility between CFLRST column and reinforced concrete(RC)column were also analyzed.The results of the finite element analysis show that the loading process of CFLRST column consists of elastic stage,yield stage and failure stage.The failure modes are mainly strength failure and failure of elastoplastic instability.CFLRST column has higher bearing capacities in comparison with reinforced concrete columns with the same steel ratio.In addition,the stiffness degeneration of CFLRST column is slower than RC column and CFLRST column has good ductility.