Sugarcane red rot caused by Colletotrichum falcatum Went. is an important epidemical fungal disease. The outbreak of large-scale epidemics would cause huge losses to sugarcane production. At present,the pesticide cont...Sugarcane red rot caused by Colletotrichum falcatum Went. is an important epidemical fungal disease. The outbreak of large-scale epidemics would cause huge losses to sugarcane production. At present,the pesticide control effect is not ideal. Moreover,due to long-term continuous cropping and changeable climate in recent years,favorable conditions for the occurrence of red rot have been created. The disease was often prevalent in various sugarcane areas,caused serious damage and seriously affected the sugarcane production. With the rapid spread of the disease worldwide,the control of sugarcane red rot has become the hot spot in the field of sugarcane production and research. In this paper,the epidemic characteristics of sugarcane red rot were analyzed in combination with the field investigation. To provide theoretical basis for prevention and control of red rot in China and effective control the widespread occurrence of the disease,combined with the latest research results at home and abroad,we proposed to select resistant varieties mainly,use biological control agents such as Trichoderma spp.,Pseudomonas spp.and Bacillus spp. to treat the seed cane and soil,timely apply chemical pesticide in critical periods and strengthen scientific and effective comprehensive coordinated prevention and control measures such as field management against red rot.展开更多
Pyropia yezoensis(formerly Porphyra yezoensis)is an economically important red alga that is cultured extensively in China.The red rot disease occurs commonly during Pyropia cultivation,causing serious economic losses....Pyropia yezoensis(formerly Porphyra yezoensis)is an economically important red alga that is cultured extensively in China.The red rot disease occurs commonly during Pyropia cultivation,causing serious economic losses.An incidence of red rot disease was found in a P.yezoensis farm from mid-November to mid-December 2015 at Lianyungang,Jiangsu Province,China.Histopathological examination revealed that the naturally infected thalli were infected apparently by a pathogen,leading to red rot symptoms.The causative agent was isolated and identified as the oomycete Pythium chondricola by morphological analysis and sequence analysis of the internal transcribed spacer and cytochrome oxidase subunit 1(cox 1).In artifi cial infection experiments on the P.yezoensis blades,the P.chondricola isolate was able to cause the same characteristic histopathology seen in natural infections.P.chondricola grew well at a wide range of temperatures in the range 8-31℃,salinities at 0-45 and pH 5-9.In an orthogonal test used to determine the effects of environmental factors(temperature,salinity,and zoospore concentration)on infection,the data revealed that temperature was the most important factor to affect red rot disease development,with the optimal conditions for disease expansion being 20℃,35 salinity,and a zoospore concentration of 10^6 zoospores/mL.The results obtained from the present study prompted us to set up a comprehensive epidemiological study on Pyropia,which will provide support to maintain the healthy development of the Pyropia industry in China.展开更多
Almost all the studies both domestic and international using white rot fungus for dye wastewater treatment are performed under sterile conditions. However, it is obviously unpractical that wastewater with dyes is trea...Almost all the studies both domestic and international using white rot fungus for dye wastewater treatment are performed under sterile conditions. However, it is obviously unpractical that wastewater with dyes is treated under sterile conditions. A feasible study was made for using white rot fungus Phanerochaete chrysosporium to degrade reactive brilliant red K-2BP dye under non-sterile conditions. The results showed that there was no decolorizing effect under non-sterile condition if white rot fungus was incubated under non-sterile condition, and the decolorization was always near to 0% during decolorizing test for 3 d; in the meantime, a lot of yeast funguses were found in liquid medium when white rot fungus was incubated under non-sterile conditions; however, if white rot fungus was incubated under sterile condition firstly, its decolorization was above 90% under non-sterile condition, which was similar to that of sterile condition. So we point out that the treating process for wastewater with dyes should be divided into two stages. The first stage is that white rot fungus should be incubated under sterile conditions, and the second stage is that reactive brilliant red K-2BP is decolorized under non-sterile conditions. The method not only save the operation cost which decolorizing reactive brilliant red K-2BP under sterile condition, but also provide the feasibility for using white rot fungus to degrade wastewater with dyes under non-sterile conditions.展开更多
基金Supported by Sugar Crop Research System (CARS-170303)the Yunling Industry and Technology Leading Talent Training Program "Prevention and Control of Sugarcane Pests"(2018LJRC56)the Yunnan Province Agriculture Research System (YNGZTX-4-92)。
文摘Sugarcane red rot caused by Colletotrichum falcatum Went. is an important epidemical fungal disease. The outbreak of large-scale epidemics would cause huge losses to sugarcane production. At present,the pesticide control effect is not ideal. Moreover,due to long-term continuous cropping and changeable climate in recent years,favorable conditions for the occurrence of red rot have been created. The disease was often prevalent in various sugarcane areas,caused serious damage and seriously affected the sugarcane production. With the rapid spread of the disease worldwide,the control of sugarcane red rot has become the hot spot in the field of sugarcane production and research. In this paper,the epidemic characteristics of sugarcane red rot were analyzed in combination with the field investigation. To provide theoretical basis for prevention and control of red rot in China and effective control the widespread occurrence of the disease,combined with the latest research results at home and abroad,we proposed to select resistant varieties mainly,use biological control agents such as Trichoderma spp.,Pseudomonas spp.and Bacillus spp. to treat the seed cane and soil,timely apply chemical pesticide in critical periods and strengthen scientific and effective comprehensive coordinated prevention and control measures such as field management against red rot.
基金Supported by the China Agriculture Research System(No.CARS-50)the National Natural Sciences Foundation of China(No.31372517)+2 种基金the Fundamental Research Funds for the Central Universities(No.201562018)the National Infrastructure of Fishery Germplasm Resources(No.2017DKA30470)the Project of Aoshan Scientific and Technological Innovation Program of Qingdao National Laboratory for Marine Science and Technology(No.2015ASKJ02)
文摘Pyropia yezoensis(formerly Porphyra yezoensis)is an economically important red alga that is cultured extensively in China.The red rot disease occurs commonly during Pyropia cultivation,causing serious economic losses.An incidence of red rot disease was found in a P.yezoensis farm from mid-November to mid-December 2015 at Lianyungang,Jiangsu Province,China.Histopathological examination revealed that the naturally infected thalli were infected apparently by a pathogen,leading to red rot symptoms.The causative agent was isolated and identified as the oomycete Pythium chondricola by morphological analysis and sequence analysis of the internal transcribed spacer and cytochrome oxidase subunit 1(cox 1).In artifi cial infection experiments on the P.yezoensis blades,the P.chondricola isolate was able to cause the same characteristic histopathology seen in natural infections.P.chondricola grew well at a wide range of temperatures in the range 8-31℃,salinities at 0-45 and pH 5-9.In an orthogonal test used to determine the effects of environmental factors(temperature,salinity,and zoospore concentration)on infection,the data revealed that temperature was the most important factor to affect red rot disease development,with the optimal conditions for disease expansion being 20℃,35 salinity,and a zoospore concentration of 10^6 zoospores/mL.The results obtained from the present study prompted us to set up a comprehensive epidemiological study on Pyropia,which will provide support to maintain the healthy development of the Pyropia industry in China.
基金The National Natural Science Foundation of China (No. 50478010) and the Chinese Postdoctoral Science Foundation (No.20040350022)
文摘Almost all the studies both domestic and international using white rot fungus for dye wastewater treatment are performed under sterile conditions. However, it is obviously unpractical that wastewater with dyes is treated under sterile conditions. A feasible study was made for using white rot fungus Phanerochaete chrysosporium to degrade reactive brilliant red K-2BP dye under non-sterile conditions. The results showed that there was no decolorizing effect under non-sterile condition if white rot fungus was incubated under non-sterile condition, and the decolorization was always near to 0% during decolorizing test for 3 d; in the meantime, a lot of yeast funguses were found in liquid medium when white rot fungus was incubated under non-sterile conditions; however, if white rot fungus was incubated under sterile condition firstly, its decolorization was above 90% under non-sterile condition, which was similar to that of sterile condition. So we point out that the treating process for wastewater with dyes should be divided into two stages. The first stage is that white rot fungus should be incubated under sterile conditions, and the second stage is that reactive brilliant red K-2BP is decolorized under non-sterile conditions. The method not only save the operation cost which decolorizing reactive brilliant red K-2BP under sterile condition, but also provide the feasibility for using white rot fungus to degrade wastewater with dyes under non-sterile conditions.