期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
A method of Robust low-angle target height and compound reflection coefficient joint estimation
1
作者 WANG Shenghua CAO Yunhe LIU Yutao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第2期322-329,共8页
It is always a challenging issue for radar systems to estimate the height of a low-angle target in the multipath propagation environment.The highly deterministic maximum likelihood estimator has a high accuracy,but th... It is always a challenging issue for radar systems to estimate the height of a low-angle target in the multipath propagation environment.The highly deterministic maximum likelihood estimator has a high accuracy,but the errors of the ground reflection coefficient and the reflecting surface height have serious influence on the method.In this paper,a robust es-timation method with less computation burden is proposed based on the compound reflection coefficient multipath model for low-angle targets.The compound reflection coefficient is es-timated from the received data of the array and then a one-di-mension generalized steering vector is constructed to estimate the target height.The algorithm is robust to the reflecting sur-face height error and the ground reflection coefficient error.Fi-nally,the experiment and simulation results demonstrate the validity of the proposed method. 展开更多
关键词 low-angle target robust joint estimation compound reflection coefficient MULTIPATH direction of arrival(DOA)
下载PDF
Research on Thin Layer Structure Identification and Sedimentary Facies of Middle and Deep Layers Based on Reflection Coefficient Inversion—By Taking Dongying Formation of CFD Oilfield in Bohai Offshore as an Example
2
作者 Wentong Zhang Qing Zhou +2 位作者 Wei Yang Jiaguo Ma Jie Tan 《Open Journal of Geology》 2021年第6期197-209,共13页
The sand layer B of Dongying Formation of CFD oilfield in Bohai offshore belongs to the middle deep layer of buried hill overlap deposit. Its reservoir distribution has the characteristics of large burial depth, thin ... The sand layer B of Dongying Formation of CFD oilfield in Bohai offshore belongs to the middle deep layer of buried hill overlap deposit. Its reservoir distribution has the characteristics of large burial depth, thin thickness and rapidly lateral change. Because of low resolution of seismic data and overlying sand layer. It is difficult to identify and interpret the structure of sand layer accurately. The uncertainty of structure and reservoir restricts the fine development of B sand layer. In order to identify the top surface of reservoir effectively. The seismic data are processed by using the reflection coefficient inversion method. The results show that the inversion resolution of reflection coefficient is significantly higher than that of original data. The top surface of sand layer B and its overlying sand layer can be well identified and traced. Carrying out structural interpretation of B sand layer based on reflection coefficient inversion data and the microstructure and the formation tip extinction point are implemented. Based on the constraint of new interpretation level, the sedimentary facies plane distribution of B sand layer is described and make prediction of dominant reservoir development area in detail combining with sedimentary paleogeomorphology, along layer attribute section and limited drilling data. The research shows that the study area is mainly from the northwest material sources, the slope belt in the northwest is close to the lake shoreline with a gentle slope and shallow water depositional environment, which is located on the main transport and deposition channels. The shallow water gentle slope landform is suitable for forming large-area sand bar deposition, mainly composed of underwater distributary channel and debouch bars facies, which is the dominant reservoir development area. The research conclusion guides the deployment and implementation of the development well location effectively. 展开更多
关键词 Middle Deep Layer Braided River Delta reflection coefficient Inversion Paleogeomorphology Sedimentary Facies
下载PDF
Algorithm and Design Methodology to Develop a PIFA with Optimized Reflection Coefficient for the ISM 868 MHz Band
3
作者 Bouchta Hajjine Christophe Escriba +1 位作者 Daniel Medale Jean-Yves Fourniols 《Open Journal of Antennas and Propagation》 2016年第4期166-175,共10页
This paper presents a methodological approach to design a printed Inverted F antenna for the ISM 868 MHz band. For this design, the ground plane dimensions were kept fixed and the meandered radiating arm was modified ... This paper presents a methodological approach to design a printed Inverted F antenna for the ISM 868 MHz band. For this design, the ground plane dimensions were kept fixed and the meandered radiating arm was modified to obtain the best compromise integration/performances. This approach was then generalized to design meandered printed inverted F antennas. 展开更多
关键词 Design ALGORITHM Meandered Antenna PIFA ISM Integration reflection coefficient
下载PDF
Analysis of Directional Spectra and Reflection Coefficients in Incident and Reflected Wave Field
4
作者 柳淑学 俞聿修 《China Ocean Engineering》 SCIE EI 2001年第3期417-428,共12页
In this paper, the modified Bayesian method for the analysis of directional wave spectra and reflection coefficients is verified by numerical and physical simulation of waves. The results show that the method can basi... In this paper, the modified Bayesian method for the analysis of directional wave spectra and reflection coefficients is verified by numerical and physical simulation of waves. The results show that the method can basically separate the incident and reflected directional spectra. In addition, the effect of the type of wave gage arrays, the number of measured wave properties, and the distance between the wave gage array and the reflection line on the resolution of the method are investigated. Some suggestions are proposed for practical application. 展开更多
关键词 multidirectional waves wave gage array reflect ion coefficient incident wave wave field
下载PDF
Wear monitoring method of water-lubricated polymer thrust bearing based on ultrasonic reflection coefficient amplitude spectrum
5
作者 Changxiong NING Fei HU +2 位作者 Wu OUYANG Xinpin YAN Dongling XU 《Friction》 SCIE EI CAS CSCD 2023年第5期685-703,共19页
The water-lubricated thrust bearings of the marine rim-driven thruster(RDT)are usually composed of polymer composites,which are prone to serious wear under harsh working conditions.Ultrasonic is an excellent non-destr... The water-lubricated thrust bearings of the marine rim-driven thruster(RDT)are usually composed of polymer composites,which are prone to serious wear under harsh working conditions.Ultrasonic is an excellent non-destructive monitoring technology,but polymer materials are characterized by viscoelasticity,heterogeneity,and large acoustic attenuation,making it challenging to extract ultrasonic echo signals.Therefore,this paper proposes a wear monitoring method based on the amplitude spectrum of the ultrasonic reflection coefficient.The effects of bearing parameters,objective function,and algorithm parameters on the identification results are simulated and analyzed.Taking the correlation coefficient and root mean square error as the matching parameters,the thickness,sound velocity,density,and attenuation factor of the bearing are inversed simultaneously by utilizing the differential evolution algorithm(DEA),and the wear measurement system is constructed.In order to verify the identification accuracy of this method,an accelerated wear test under heavy load was executed on a multi-functional vertical water lubrication test rig with poly-ether-etherketone(PEEK)fixed pad and stainless-steel thrust collar as the object.The thickness of pad was measured using the high-precision spiral micrometer and ultrasonic testing system,respectively.Ultimately,the results demonstrate that the thickness identification error of this method is approximately 1%,and in-situ monitoring ability will be realized in the future,which is of great significance to the life prediction of bearings. 展开更多
关键词 water-lubricated polymer thrust bearings wear monitoring ultrasonic reflection coefficient amplitude spectrum parameter inversion differential evolution
原文传递
Wave Reflection by Rectangular Breakwaters for Coastal Protection
6
作者 Hasna Akarni Hamza Mabchour +1 位作者 Laila El Aarabi Soumia Mordane 《Fluid Dynamics & Materials Processing》 EI 2024年第3期579-593,共15页
In this study,we focus on the numerical modelling of the interaction between waves and submerged structures in the presence of a uniform flow current.Both the same and opposite senses of wave propagation are considere... In this study,we focus on the numerical modelling of the interaction between waves and submerged structures in the presence of a uniform flow current.Both the same and opposite senses of wave propagation are considered.The main objective is an understanding of the effect of the current and various geometrical parameters on the reflection coefficient.The wave used in the study is based on potential theory,and the submerged structures consist of two rectangular breakwaters positioned at a fixed distance from each other and attached to the bottom of a wave flume.The numerical modeling approach employed in this work relies on the Boundary Element Method(BEM).The results are compared with experimental data to validate the approach.The findings of the study demonstrate that the double rectangular breakwater configuration exhibits superior wave attenuation abilities if compared to a single rectangular breakwater,particularly at low wavenumbers.Furthermore,the study reveals that wave mitigation is more pronounced when the current and wave propagation are coplanar,whereas it is less effective in the case of opposing current. 展开更多
关键词 WAVE CURRENT BREAKWATERS Boundary Element Method(BEM) reflection coefficient
下载PDF
Effect of various physical properties on the reflection coefficients of inhomogeneous waves at the stress-free surface of partially saturated soils induced by obliquely incident fast P-wave
7
作者 M.Kumari M.S.Barak +1 位作者 A.Singh M.Kumar 《Journal of Ocean Engineering and Science》 SCIE 2022年第3期225-236,共12页
Ghasemzadeh and Abounouri[1]developed a mathematical model of partially saturated soils that is solved using the potential method,which decomposes elastodynamics equations into two standard wave equations,a scalar wav... Ghasemzadeh and Abounouri[1]developed a mathematical model of partially saturated soils that is solved using the potential method,which decomposes elastodynamics equations into two standard wave equations,a scalar wave equation for scalar potential and a vector wave equation for vector potential.In such a medium,four waves exist three longitudinal and one shear.Each fluid phase tortuous path is taken into account in this model.The inertial coupling between solid and fluid particles is consid-ered.Furthermore,both open-pore and sealed-pore boundaries are explored to investigate the reflection phenomenon at the surface of partially saturated soils.For both boundaries,the reflection coefficients of inhomogeneous waves at a partially saturated soil surface are found as a non-singular set of linear equations.All waves(both reflected and incident)in partially saturated soils are pronounced as inhomogeneous due to viscosity in pore fluids(i.e.,distinct directions of attenuation and propagation).The energy shares of reflected waves are determined using an energy matrix.A numerical example is used to determine the reflection coefficients and the distribution of incident energy among the various reflected waves.The effect of different physical features on reflection coefficients and incident energy partitioning is illustrated graphically.The conservation of incident energy at the surface of partially saturated soils is mathematically confirmed at all angles of incidence. 展开更多
关键词 Plane harmonic wave INHOMOGENEOUS Partially saturated soils reflection coefficients Energy shares
原文传递
Unstable Surface Modes in Finite Chain Computations:Deficiency of Reflection Coefficient Approach
8
作者 Shaoqiang Tang Ming Fang 《Communications in Computational Physics》 SCIE 2010年第6期143-158,共16页
In this paper,we investigate the stability for a finite harmonic lattice under a certain class of boundary conditions.A rigorous eigenvalue study clarifies that the invalidity of Fourier modes as the basis results in ... In this paper,we investigate the stability for a finite harmonic lattice under a certain class of boundary conditions.A rigorous eigenvalue study clarifies that the invalidity of Fourier modes as the basis results in the deficiency of standard reflection coefficient approach for stability analysis.In a certain parameter range,unstable surface modes exist in the form of exponential decay in space,and exponential growth in time.An approximate eigen-polynomial is proposed to ease the stability analysis.Moreover,the eigenvalues with small positive real part quantitatively explain the long time instability in wave propagation computations.Numerical results verify the analysis. 展开更多
关键词 Unstable surface mode reflection coefficient finite chain
原文传递
A technique of reconstructing field for measuring sound reflection coefficients at arbitrary angles of incidence
9
作者 HE Yuanan, LI Rui, HE Zuoyong (Harbin Engineering University Harbin 150001) 《Chinese Journal of Acoustics》 2001年第4期310-318,共9页
An improved reconstructing field method for measuring sound reflection coefficient of a large impedance surface at arbitrary incident angles is proposed in this paper. In order to get the reflection coefficient by the... An improved reconstructing field method for measuring sound reflection coefficient of a large impedance surface at arbitrary incident angles is proposed in this paper. In order to get the reflection coefficient by the Spatial Transformation of Sound Fields (STSF), the complex pressure on two parallel planes near by the material surface or the reflection surface must be measured. By the acoustic intensity measurement, the phases of complex pressure on two parallel planes are given. The results of the numerical simulations are shown that the error due to the finite size of the measurement area, and it may be reduced by using a dipole sound source. 展开更多
关键词 A technique of reconstructing field for measuring sound reflection coefficients at arbitrary angles of incidence
原文传递
Scattering of Water Waves by Dual Symmetric Inclined Floating Porous Barriers Using the DBEM
10
作者 WANG Li-xian DENG Yan-wen +1 位作者 YE Yang-sha DENG Zheng-zhi 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期156-168,共13页
The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering th... The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering that thin barriers are zero-thickness,a novel numerical method involving the the coupling of the dual boundary element method(DBEM)with damping layers is applied.In order to effectively damp out the reflected waves,two damping layers,instead of pseudoboundaries are implemented near the two side boundaries of the computational domain.Thus,the modified linearized free surface boundary conditions are formulated and used for solving both the ordinary boundary integral equation as well as the hypersingular boundary integral equation for degenerate boundaries.The newly developed numerical method is validated against analytical methods using the matched eigenfunction expansion method for the special case of two vertical barriers or the inclined angle to the vertical being zero.The influence of the length of the two damping layers has been discussed.Moreover,these findings are also validated against previous results for several cases.After validation,the numerical results for the reflection coefficient,transmission coefficient and dissipation coefficient are obtained by varying the inclination angle and porosity-effect parameter.The effects of both the inclination angle and the porosity on the amplitudes of wave forces acting on both the front and rear barriers are also investigated.It is found that the effect of the inclination angle mainly shifts the location of the extremal values of the reflection and the transmission coefficients.Additionally,a moderate value of the porosity-parameter is quite effective at dissipating wave energy and mitigating the wave loads on dual barriers. 展开更多
关键词 dual boundary element method inclined perforated floating breakwater reflection coefficient transmission coefficient damping layer
下载PDF
Iterative analytical solution for wave reflection by a multichamber partially perforated caisson breakwater 被引量:1
11
作者 Yang Zhao Yong Liu Huajun Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第7期115-126,共12页
This study examines wave reflection by a multi-chamber partially perforated caisson breakwater based on potential theory.A quadratic pressure drop boundary condition at perforated walls is adopted,which can well consi... This study examines wave reflection by a multi-chamber partially perforated caisson breakwater based on potential theory.A quadratic pressure drop boundary condition at perforated walls is adopted,which can well consider the effect of wave height on the wave dissipation by perforated walls.The matched eigenfunction expansions with iterative calculations are applied to develop an analytical solution for the present problem.The convergences of both the iterative calculations and the series solution itself are confirmed to be satisfactory.The calculation results of the present analytical solution are in excellent agreement with the numerical results of a multi-domain boundary element solution.Also,the predictions by the present solution are in reasonable agreement with experimental data in literature.Major factors that affect the reflection coefficient of the perforated caisson breakwater are examined by calculation examples.The analysis results show that the multi-chamber perforated caisson breakwater has a better wave energy dissipation function(lower reflection coefficient)than the single-chamber type over a broad range of wave frequency and may perform better if the perforated walls have larger porosities.When the porosities of the perforated walls decrease along the incident wave direction,the perforated caisson breakwater can achieve a lower reflection coefficient.The present analytical solution is simple and reliable,and it can be used as an efficient tool for analyzing the hydrodynamic performance of perforated breakwaters in preliminary engineering design. 展开更多
关键词 partially perforated caisson multi-chamber reflection coefficient quadratic pressure drop matched eigenfunction expansions iterative calculation
下载PDF
On the eigenvalues and eigendisplacement of the critical mode in horizontally layered media
12
作者 Shaotong Wang Laiyu Lu 《Earthquake Science》 2024年第1期13-35,共23页
Wave propagation in horizontally layered media is a classical problem in seismic-wave theory.In semi-infinite space,a nondispersive Rayleigh wave mode exists,and the eigendisplacement decays exponentially with depth.I... Wave propagation in horizontally layered media is a classical problem in seismic-wave theory.In semi-infinite space,a nondispersive Rayleigh wave mode exists,and the eigendisplacement decays exponentially with depth.In a layered model with increasing layer velocity,the phase velocity of the Rayleigh wave varies between the S-wave velocity of the bottom half-space and that of the classical Rayleigh wave propagated in a supposed half-space formed by the parameters of the top layer.If the phase velocity is the same as the P-or S-wave velocity of the layer,which is called the critical mode or critical phase velocity of surface waves,the general solution of the wave equation is not a homogeneous(expressed by trigonometric functions)or inhomogeneous(expressed by exponential functions)plane wave,but one whose amplitude changes linearly with depth(expressed by a linear function).Theories based on a general solution containing only trigonometric or exponential functions do not apply to the critical mode,owing to the singularity at the critical phase velocity.In this study,based on the classical framework of generalized reflection and transmission coefficients,the propagation of surface waves in horizontally layered media was studied by introducing a solution for the linear function at the critical phase velocity.Therefore,the eigenvalues and eigenfunctions of the critical mode can be calculated by solving a singular problem.The eigendisplacement characteristics associated with the critical phase velocity were investigated for different layered models.In contrast to the normal mode,the eigendisplacement associated with the critical phase velocity exhibits different characteristics.If the phase velocity is equal to the S-wave velocity in the bottom half-space,the eigendisplacement remains constant with increasing depth. 展开更多
关键词 dispersion curve EIGENVALUE generalized reflection and transmission coefficient surface wave guide wave
下载PDF
孔隙率对矩形沟槽上垂直多孔屏障的波浪散射效应影响
13
作者 Gour Das Rumpa Chakraborty 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第1期85-100,共16页
The effect of porosity on surface wave scattering by a vertical porous barrier over a rectangular trench is studied here under the assumption of linearized theory of water waves.The fluid region is divided into four s... The effect of porosity on surface wave scattering by a vertical porous barrier over a rectangular trench is studied here under the assumption of linearized theory of water waves.The fluid region is divided into four subregions depending on the position of the barrier and the trench.Using the Havelock’s expansion of water wave potential in different regions along with suitable matching conditions at the interface of different regions,the problem is formulated in terms of three integral equations.Considering the edge conditions at the submerged end of the barrier and at the edges of the trench,these integral equations are solved using multi-term Galerkin approximation technique taking orthogonal Chebyshev’s polynomials and ultra-spherical Gegenbauer polynomial as its basis function and also simple polynomial as basis function.Using the solutions of the integral equations,the reflection coefficient,transmission coefficient,energy dissipation coefficient and horizontal wave force are determined and depicted graphically.It was observed that the rate of convergence of the Galerkin method in computing the reflection coefficient,considering special functions as basis function is more than the simple polynomial as basis function.The change of porous parameter of the barrier and variation of trench width and height significantly contribute to the change in the scattering coefficients and the hydrodynamic force.The present results are likely to play a crucial role in the analysis of surface wave propagation in oceans involving porous barrier over submarine trench. 展开更多
关键词 Water wave scattering Rectangular trench Vertical porous barriers Havelock’s inversion formula Multi-term galerkin approximation reflection and transmission coefficients Energy dissipation Hydrodynamic force
下载PDF
Response of loose bonding on reflection and transmission of elastic waves at interface between elastic solid and micropolar porous cubic crystal
14
作者 Rajneesh KUMAR Meenakshi PANCHAL 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第5期605-616,共12页
The problem of reflection and transmission of plane periodic waves incident on the interface between the loosely bonded elastic solid and micropolar porous cubic crystal half spaces is investigated. This is done by as... The problem of reflection and transmission of plane periodic waves incident on the interface between the loosely bonded elastic solid and micropolar porous cubic crystal half spaces is investigated. This is done by assuming that the interface behaves like a dislocation, which preserves the continuity of traction while allowing a finite amount of slip. Amplitude ratios of various reflected and transmitted waves have been depicted graphically. Some special cases of interest have been deduced from the present investigation. 展开更多
关键词 MICROPOLAR POROUS cubic crystal reflection coefficients transmission coefficients bonding parameter
下载PDF
Experimental Study of Irregular Wave Reflection by a Perforated Caisson Breakwater Under Wave Overtopping Conditions
15
作者 LIU Xiao LIU Yong 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第4期926-934,共9页
The characteristics of irregular wave reflection by a perforated caisson breakwater under wave overtopping conditions were investigated using physical model tests.The effects of various parameters,especially the mean ... The characteristics of irregular wave reflection by a perforated caisson breakwater under wave overtopping conditions were investigated using physical model tests.The effects of various parameters,especially the mean overtopping discharge that was mainly determined by the relative crest freeboard,on the reflection coefficient of perforated caisson breakwater were analyzed using experimental data.The results showed that the wave overtopping occurrence had no appreciable effect on the reflection coefficient when the mean overtopping discharge was less than 0.2 m^(3)(m s)^(−1).Under the wave overtopping condition,the reflection coefficient of the perforated caisson breakwater in this study was reduced by 20%-50% compared with that of the non-perforated caisson breakwater.A predictive formula of the reflection coefficient for perforated caisson breakwaters in terms of relative water depth,relative chamber width,and porosity of the caisson front wall,was developed for practical engineering design. 展开更多
关键词 perforated caisson model test reflection coefficient wave overtopping predictive formula
下载PDF
Hydrodynamic Coefficient Investigation on a Partial Permeable Stepped Breakwater Under Regular Waves
16
作者 YIN Zegao ZHENG Zihan +1 位作者 YU Ning WANG Haojian 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第6期1341-1352,共12页
Traditional breakwater takes the advantage of high protection performance and has been widely used.However,it contributes to high wave reflection in the seaside direction and poor water exchange capacity between open ... Traditional breakwater takes the advantage of high protection performance and has been widely used.However,it contributes to high wave reflection in the seaside direction and poor water exchange capacity between open seawater and an inside harbor.Consequently,a partially permeable stepped breakwater(PPSB)is proposed to ensure safety and good water exchange capacity for an inside harbor,and a 3-D computational fluid dynamics(CFD)mathematical model was used to investigate the hydrodynamic coefficients using Reynolds-Averaged Navier-Stokes equations,Re-Normalization Group(RNG)k-εequations,and the VOF technique.A series of experiments are conducted to measure the wave heights for validating the mathematical model,and a series of dimensionless parameters considering wave and PPSB effects were presented to assess their relationships with hydrodynamic coefficients,respectively.With the increase in the reciprocal value of PPSB slope,incident wave steepness and permeable ratio below still water level(SWL),the wave reflection coefficient decreases.The wave transmission coefficient decreases with an increase in the reciprocal value of the PPSB slope and incident wave steepness;however,it increases with the increase in the permeable ratio below SWL.With increases in the reciprocal value of the PPSB slope,permeable ratio below SWL and incident wave steepness for relatively high wave period scenarios,the wave energy dissipation coefficient increases;however,it decreases slightly with increases in the incident wave steepness for the smallest wave period scenarios.Furthermore,simple prediction formulas are conducted for predicting the hydrodynamic coefficients and they are well validated with the related data. 展开更多
关键词 regular waves partially permeable stepped breakwater wave reflection coefficient wave transmission coefficient wave energy dissipation coefficient mathematical model
下载PDF
Effect of Temperature on the Acoustic Reflection Characteristics of Seafloor Surface Sediments
17
作者 ZOU Dapeng YE Guican +3 位作者 LIU Wei SUN Han LI Jun XIAO Tibing 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第1期62-68,共7页
Because the sound speeds of seawater and seafloor sediment both increase with temperature,the influence of tempera-ture on the bottom reflection characteristics of seafloor sediments needs to be investigated.Based on ... Because the sound speeds of seawater and seafloor sediment both increase with temperature,the influence of tempera-ture on the bottom reflection characteristics of seafloor sediments needs to be investigated.Based on the calculation of the temperature-controlled experimental measurement data of typical seafloor surface sediment samples,the temperature-dependent acoustic characteristics,including acoustic impedance,acoustic impedance ratio between surface sediment and seawater,and reflection coefficient,were analyzed.The effective density fluid model was used to analyze and explain the reflection coefficient variation of surface sediments with temperature and predict the dispersion characteristics.Results show that the acoustic impedance of the seabed sediment increases with temperature,whereas the acoustic impedance ratio and acoustic reflection coefficient slightly decrease.The acoustic impedance,acoustic impedance ratio,and acoustic reflection coefficient of sandy,silty,and clayey sediments vary similarly with tem-perature variation.Moreover,the influence of temperature on these acoustic characteristics is independent of detection frequencies. 展开更多
关键词 reflection coefficient seafloor sediment TEMPERATURE acoustic impedance
下载PDF
Monitoring the change in horizontal stress with multi-wave time-lapse seismic response based on nonlinear elasticity theory 被引量:1
18
作者 Fu-Bin Chen Zhao-Yun Zong Xing-Yao Yin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期815-826,共12页
Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (... Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (CO_(2)) injection and storage, shallow surface prospecting and deep-earth structure description. The change in in-situ stress induced by hydrocarbon production and localized tectonic movements causes the changes in rock mechanic properties (e.g. wave velocities, density and anisotropy) and further causes the changes in seismic amplitudes, phases and travel times. In this study, the nonlinear elasticity theory that regards the rock skeleton (solid phase) and pore fluid as an effective whole is used to characterize the effect of horizontal principal stress on rock overall elastic properties and the stress-dependent anisotropy parameters are therefore formulated. Then the approximate P-wave, SV-wave and SH-wave angle-dependent reflection coefficient equations for the horizontal-stress-induced anisotropic media are proposed. It is shown that, on the different reflectors, the stress-induced relative changes in reflectivities (i.e., relative difference) of elastic parameters (i.e., P- and S-wave velocities and density) are much less than the changes in contrasts of anisotropy parameters. Therefore, the effects of stress change on the reflectivities of three elastic parameters are reasonably neglected to further propose an AVO inversion approach incorporating P-, SH- and SV-wave information to estimate the change in horizontal principal stress from the corresponding time-lapse seismic data. Compared with the existing methods, our method eliminates the need for man-made rock-physical or fitting parameters, providing more stable predictive power. 1D test illustrates that the estimated result from time-lapse P-wave reflection data shows the most reasonable agreement with the real model, while the estimated result from SH-wave reflection data shows the largest bias. 2D test illustrates the feasibility of the proposed inversion method for estimating the change in horizontal stress from P-wave time-lapse seismic data. 展开更多
关键词 Monitoring change in horizontal stress Multi-wave reflection coefficients Nonlinear elasticity theory Time-lapse seismic data
下载PDF
Penetration characteristics of VLF wave from atmosphere into lower ionosphere 被引量:8
19
作者 Shufan Zhao Xuhui Shen +2 位作者 Weiyan Pan Xuemin Zhang Li Liao 《Earthquake Science》 CSCD 2010年第3期275-281,共7页
The factors affecting the reflection and transmission coefficient of the ionosphere have been analyzed.These factors include wave frequency,incident angle,geomagnetic inclination,electron density and collision frequen... The factors affecting the reflection and transmission coefficient of the ionosphere have been analyzed.These factors include wave frequency,incident angle,geomagnetic inclination,electron density and collision frequency in the ionosphere.The ionosphere refractive index is also analyzed.The ionosphere above 70 km is considered to be homogeneous and anisotropic,and the reflection and transmission coefficient matrix is calculated using matrix method.Simultaneously the Booker quartic equation is solved to get the refractive index in the ionosphere.The results show that when the wave frequency is higher,it is easier to penetrate into the ionosphere from its bottom boundary and the propagation attenuation in the ionosphere is smaller.TE(traverse electric) wave and TM(traverse magnetic) wave can both penetrate into the ionosphere with a small incident angle,while TE wave can hardly transmit into the ionosphere when the incident angle is large.The transmission coefficient decreases as the geomagnetic inclination increases.TE and TM wave cannot penetrate into the ionosphere at magnetic equator.When the electron collision frequency is higher,it is easier for VLF wave to penetrate into the ionosphere and the attenuation of ordinary wave is weaker,which may be caused by the energy transportation between the waves and the particles.The ordinary(O) wave experiences severer attenuation than extraordinary(X) wave,and X wave is a penetration mode whereas O wave is a non-penetration mode in the ionosphere.All the results indicate that VLF wave with higher frequency is easier to penetrate into the ionosphere and to be recorded by the satellites at high latitude.It is hard for ULF and the lower frequency VLF wave to transmit into the ionosphere directly for the severe reflection and attenuation.It may transmit into the ionosphere with a small incident angle due to the nonlinear effect,for example,the interaction between the waves and the particles or cross modulation,and then propagate along the whistle duct with small attenuation.This work may be a preliminary theoretical exploration for the future calculation on the response of ground based VLF artificial transmitter in the ionosphere and further study on the seismic ionosphere coupling model. 展开更多
关键词 VLF wave low ionosphere reflection coefficient transmission coefficient refractive index
下载PDF
A Semi-Analytical Potential Solution for Wave Resonance in Gap Between Floating Box and Vertical Wall 被引量:1
20
作者 LIU Yong LI Hua-jun +2 位作者 LU Lin LI Ai-jun TAN Lei 《China Ocean Engineering》 SCIE EI CSCD 2020年第6期747-759,共13页
Based on potential flow theory, a dissipative semi-analytical solution is developed for the wave resonance in the narrow gap between a fixed floating box and a vertical wall by using velocity potential decompositions ... Based on potential flow theory, a dissipative semi-analytical solution is developed for the wave resonance in the narrow gap between a fixed floating box and a vertical wall by using velocity potential decompositions and matched eigenfunction expansions. The energy dissipation near the box is modelled in the potential flow solution by introducing a quadratic pressure loss condition on the gap entrance. Such a treatment is inspired by the classical local head loss formula for the sudden change of cross section in channel flow, where the energy dissipation is assumed to be proportional to the square of local velocity for high Reynolds number flows. The dimensionless energy loss coefficient is calibrated based on experimental data. And it is found to be insensitive to the incident wave height and wave frequency. With the calibrated energy loss coefficient, the resonant wave height in gap and the reflection coefficient are calculated by the present dissipative semi-analytical solution. The predictions are in good agreement with experimental data. Case studies suggest that the maximum relative energy dissipation occurs near the resonant frequency, which leads to the minimum reflection coefficient. The horizontal wave forces on the box and the vertical wall attain also maximum values near the resonant frequency, while the vertical wave force on the box decreases abruptly there to a small value. 展开更多
关键词 gap resonance semi-analytical solution quadratic pressure loss reflection coefficient wave forces iterative calculations
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部