In relay cellular network, relay links will consume extra frequency resources, which makes radio resource allocation become more complex and important. A new frequency allocation scheme is proposed to increase cell ca...In relay cellular network, relay links will consume extra frequency resources, which makes radio resource allocation become more complex and important. A new frequency allocation scheme is proposed to increase cell capacity and improve signal-to-interference ratio (SIR) of users located at cell edges. By dividing cell into different parts and configuring each of these parts with a unique reuse factor, this scheme improves spectral utilization efficiency and avoids inter-cell interference effectively. Optimal combinations of reuse factors and locations of relay nodes are also addressed and investigated. Computer simulation results show that, by employing the proposed scheme, maximum cell capacity gains of about 50%, 35% and 30% can be achieved in comparison with conventional cellular network scheme, traditional reuse partitioning scheme and reuse-adjacent-cell-frequencies scheme, respectively. Moreover, since in the proposed scheme resources are dynamically allocated among relay nodes, more benefits can be obtained in comparison with fixed resource allocation schemes under non-uniform traffic distribution.展开更多
Radio resource assignment schemes and routing strategies in relay enhanced cellular networks are proposed in this paper. Under the reuse partitioning-based frequency planning framework, the intra-cell resource partiti...Radio resource assignment schemes and routing strategies in relay enhanced cellular networks are proposed in this paper. Under the reuse partitioning-based frequency planning framework, the intra-cell resource partitioning between the base station and relay nodes was addressed firstly by introducing a metric of effective reuse factor. Then, coverage-oriented and capacity-oriented rantings, as well as two link bandwidth assignment schemes" equal-bandwidth per link" and "equal-bandwidth per mobile station" were developed. These key issues and their impacts on the system performance were analyzed comprehensively and supported by simulations. Results show that the cell capacity and edge user throughput of the proposed network are superior to the traditional non-relay network when an appropriate effective reuse factor is adopted.展开更多
基金Supported by Chinese National Science Fund for Creative Research Groups (No.60521002)Chinese National Key Technology R&D Program(No.2005BA908B02)Science Foundation of Shanghai Municipal Commission of Science and Technology (No.05dz05802) .
文摘In relay cellular network, relay links will consume extra frequency resources, which makes radio resource allocation become more complex and important. A new frequency allocation scheme is proposed to increase cell capacity and improve signal-to-interference ratio (SIR) of users located at cell edges. By dividing cell into different parts and configuring each of these parts with a unique reuse factor, this scheme improves spectral utilization efficiency and avoids inter-cell interference effectively. Optimal combinations of reuse factors and locations of relay nodes are also addressed and investigated. Computer simulation results show that, by employing the proposed scheme, maximum cell capacity gains of about 50%, 35% and 30% can be achieved in comparison with conventional cellular network scheme, traditional reuse partitioning scheme and reuse-adjacent-cell-frequencies scheme, respectively. Moreover, since in the proposed scheme resources are dynamically allocated among relay nodes, more benefits can be obtained in comparison with fixed resource allocation schemes under non-uniform traffic distribution.
基金Chinese National Science Found for Creative Research Groups (Grant No.60521002)Chinese National Key Technology R&D Program(Grant No.2005BA908B02)Science Foundation of Shanghai Municipal Commission of Science and Technology, Chinese(Grant No.05dz05802)
文摘Radio resource assignment schemes and routing strategies in relay enhanced cellular networks are proposed in this paper. Under the reuse partitioning-based frequency planning framework, the intra-cell resource partitioning between the base station and relay nodes was addressed firstly by introducing a metric of effective reuse factor. Then, coverage-oriented and capacity-oriented rantings, as well as two link bandwidth assignment schemes" equal-bandwidth per link" and "equal-bandwidth per mobile station" were developed. These key issues and their impacts on the system performance were analyzed comprehensively and supported by simulations. Results show that the cell capacity and edge user throughput of the proposed network are superior to the traditional non-relay network when an appropriate effective reuse factor is adopted.