In order to improve the drivability and energy efficiency of electric vehicle (EV), more and more batteries are connected in series with high voltage which makes it necessary to monitor the electric parameters of hi...In order to improve the drivability and energy efficiency of electric vehicle (EV), more and more batteries are connected in series with high voltage which makes it necessary to monitor the electric parameters of high voltage system (HVS) to ensure the high voltage safety. A high voltage safety management system is developed to solve this critical issue. Several key electric parameters including pre-charge, contact resistance, insulation resistance and remaining capacity are monitored and analyzed based on the presented equivalent models. An electronic unit called high voltage safety controller is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated and the on-line electric parameters monitor strategy is discussed. The real vehicle experiment results indicate that the high voltage safety management system designed is suitable for EV application.展开更多
The Yarlung Tsangpo River,the longest river in Tibet,houses most of the population and economy in Tibet Autonomous province.Under the rapid development of economy and society in Tibet,the pollution in the Yarlung Tsan...The Yarlung Tsangpo River,the longest river in Tibet,houses most of the population and economy in Tibet Autonomous province.Under the rapid development of economy and society in Tibet,the pollution in the Yarlung Tsangpo River basin has rapidly increased.Evaluating water quality and water environmental capacity is needed for water resource management in Tibet.This study used a single factor evaluation method to evaluate water quality of the Zhongba-Nyingchi section of the Yarlung Tsangpo River based on measured data of CODcr, NH3-N and TP in the study area.Based on these data,determinations of ideal water environmental capacity, emissions of pollutants and remaining water environmental capacity of the study area were made by a one-dimensional steady water quality model under either section-head control or cross-section control.The data indicate that most of the monitoring sections in the study area experienced good water quality.The three pollutants all had large remaining water environmental capacity generally,but TP exceeded state levels in the two upstream functional areas,and levels above state standards of CODcr and TP were found in several calculation cells of the two downstream functional areas.Therefore,emissions of pollutants need to be reduced to protect the water environment quality of the Yarlung Tsangpo River.展开更多
基金supported by National Hi-tech Research and Development Program of China (863 Program,No.2005AA501020)National Basic Research and Development Program of China (973 Program,No.2007CB209707).
文摘In order to improve the drivability and energy efficiency of electric vehicle (EV), more and more batteries are connected in series with high voltage which makes it necessary to monitor the electric parameters of high voltage system (HVS) to ensure the high voltage safety. A high voltage safety management system is developed to solve this critical issue. Several key electric parameters including pre-charge, contact resistance, insulation resistance and remaining capacity are monitored and analyzed based on the presented equivalent models. An electronic unit called high voltage safety controller is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated and the on-line electric parameters monitor strategy is discussed. The real vehicle experiment results indicate that the high voltage safety management system designed is suitable for EV application.
基金The Science and Technology Plan Project of Tibet Autonomous Region(Z2016C01G01/04/03)
文摘The Yarlung Tsangpo River,the longest river in Tibet,houses most of the population and economy in Tibet Autonomous province.Under the rapid development of economy and society in Tibet,the pollution in the Yarlung Tsangpo River basin has rapidly increased.Evaluating water quality and water environmental capacity is needed for water resource management in Tibet.This study used a single factor evaluation method to evaluate water quality of the Zhongba-Nyingchi section of the Yarlung Tsangpo River based on measured data of CODcr, NH3-N and TP in the study area.Based on these data,determinations of ideal water environmental capacity, emissions of pollutants and remaining water environmental capacity of the study area were made by a one-dimensional steady water quality model under either section-head control or cross-section control.The data indicate that most of the monitoring sections in the study area experienced good water quality.The three pollutants all had large remaining water environmental capacity generally,but TP exceeded state levels in the two upstream functional areas,and levels above state standards of CODcr and TP were found in several calculation cells of the two downstream functional areas.Therefore,emissions of pollutants need to be reduced to protect the water environment quality of the Yarlung Tsangpo River.