We prove an existence result without assumptions on the growth of some nonlinear terms, and the existence of a renormalized solution. In this work, we study the existence of renormalized solutions for a class of nonli...We prove an existence result without assumptions on the growth of some nonlinear terms, and the existence of a renormalized solution. In this work, we study the existence of renormalized solutions for a class of nonlinear parabolic systems with three unbounded nonlinearities, in the form { b1(x,u1)/ t-div(a(x,t,u1,Du1))+div(Ф1(u1))+f1(x,u1,u2)=O in Q, b2(x,u2)/ t-div(a(x,t,u2,Du2))+div(Ф2(u2))+f2(x,u1,u2)=O in Q in the framework of weighted Sobolev spaces, where b(x,u) is unbounded function on u, the Carath6odory function ai satisfying the coercivity condition, the general growth condition and only the large monotonicity, the function Фi is assumed to be continuous on ]R and not belong to (Lloc1(Q))N.展开更多
We study the existence of renormalized solutions for a class of nonlinear degenerated parabolic problem. The Carath6odory function satisfying the coercivity condition, the growth condition and only the large monotonic...We study the existence of renormalized solutions for a class of nonlinear degenerated parabolic problem. The Carath6odory function satisfying the coercivity condition, the growth condition and only the large monotonicity. The data belongs to LI(Q).展开更多
文摘We prove an existence result without assumptions on the growth of some nonlinear terms, and the existence of a renormalized solution. In this work, we study the existence of renormalized solutions for a class of nonlinear parabolic systems with three unbounded nonlinearities, in the form { b1(x,u1)/ t-div(a(x,t,u1,Du1))+div(Ф1(u1))+f1(x,u1,u2)=O in Q, b2(x,u2)/ t-div(a(x,t,u2,Du2))+div(Ф2(u2))+f2(x,u1,u2)=O in Q in the framework of weighted Sobolev spaces, where b(x,u) is unbounded function on u, the Carath6odory function ai satisfying the coercivity condition, the general growth condition and only the large monotonicity, the function Фi is assumed to be continuous on ]R and not belong to (Lloc1(Q))N.
文摘We study the existence of renormalized solutions for a class of nonlinear degenerated parabolic problem. The Carath6odory function satisfying the coercivity condition, the growth condition and only the large monotonicity. The data belongs to LI(Q).