期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Using Vector Representation of Propositions and Actions for STRIPS Action Model Learning
1
作者 Wei Gao Dunbo Cai 《Journal of Beijing Institute of Technology》 EI CAS 2018年第4期485-492,共8页
Action model learning has become a hot topic in knowledge engineering for automated planning.A key problem for learning action models is to analyze state changes before and after action executions from observed"p... Action model learning has become a hot topic in knowledge engineering for automated planning.A key problem for learning action models is to analyze state changes before and after action executions from observed"plan traces".To support such an analysis,a new approach is proposed to partition propositions of plan traces into states.First,vector representations of propositions and actions are obtained by training a neural network called Skip-Gram borrowed from the area of natural language processing(NLP).Then,a type of semantic distance among propositions and actions is defined based on their similarity measures in the vector space.Finally,k-means and k-nearest neighbor(kNN)algorithms are exploited to map propositions to states.This approach is called state partition by word vector(SPWV),which is implemented on top of a recent action model learning framework by Rao et al.Experimental results on the benchmark domains show that SPWV leads to a lower error rate of the learnt action model,compared to the probability based approach for state partition that was developed by Rao et al. 展开更多
关键词 automated planning action model learning vector representation of propositions
下载PDF
Textual Content Prediction via Fuzzy Attention Neural Network Model without Predefined Knowledge
2
作者 Canghong Jin Guangjie Zhang +2 位作者 Minghui Wu Shengli Zhou Taotao Fu 《China Communications》 SCIE CSCD 2020年第6期211-222,共12页
Text analysis is a popular technique for finding the most significant information from texts including semantic,emotional,and other hidden features,which became a research hotspot in the last few years.Specially,there... Text analysis is a popular technique for finding the most significant information from texts including semantic,emotional,and other hidden features,which became a research hotspot in the last few years.Specially,there are some text analysis tasks with judgment reports,such as analyzing the criminal process and predicting prison terms.Traditional researches on text analysis are generally based on special feature selection and ontology model generation or require legal experts to provide external knowledge.All these methods require a lot of time and labor costs.Therefore,in this paper,we use textual data such as judgment reports creatively to perform prison term prediction without external legal knowledge.We propose a framework that combines value-based rules and a fuzzy text to predict the target prison term.The procedure in our framework includes information extraction,term fuzzification,and document vector regression.We carry out experiments with real-world judgment reports and compare our model’s performance with those of ten traditional classification and regression models and two deep learning models.The results show that our model achieves competitive results compared with other models as evaluated by the RMSE and R-squared metrics.Finally,we implement a prototype system with a user-friendly GUI that can be used to predict prison terms according to the legal text inputted by the user. 展开更多
关键词 judgment content understanding pre-trained model FUZZIFICATION content representation vectors
下载PDF
Two-Stream Temporal Convolutional Networks for Skeleton-Based Human Action Recognition 被引量:3
3
作者 Jin-Gong Jia Yuan-Feng Zhou +3 位作者 Xing-Wei Hao Feng Li Christian Desrosiers Cai-Ming Zhang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2020年第3期538-550,共13页
With the growing popularity of somatosensory interaction devices,human action recognition is becoming attractive in many application scenarios.Skeleton-based action recognition is effective because the skeleton can re... With the growing popularity of somatosensory interaction devices,human action recognition is becoming attractive in many application scenarios.Skeleton-based action recognition is effective because the skeleton can represent the position and the structure of key points of the human body.In this paper,we leverage spatiotemporal vectors between skeleton sequences as input feature representation of the network,which is more sensitive to changes of the human skeleton compared with representations based on distance and angle features.In addition,we redesign residual blocks that have different strides in the depth of the network to improve the processing ability of the temporal convolutional networks(TCNs)for long time dependent actions.In this work,we propose the two-stream temporal convolutional networks(TSTCNs)that take full advantage of the inter-frame vector feature and the intra-frame vector feature of skeleton sequences in the spatiotemporal representations.The framework can integrate different feature representations of skeleton sequences so that the two feature representations can make up for each other’s shortcomings.The fusion loss function is used to supervise the training parameters of the two branch networks.Experiments on public datasets show that our network achieves superior performance and attains an improvement of 1.2%over the recent GCN-based(BGC-LSTM)method on the NTU RGB+D dataset. 展开更多
关键词 SKELETON action recognition temporal convolutional network(TCN) vector feature representation neural network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部