An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-trian...An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-triangulation(LDT) tech-niques, which were suitable and effective for h-adaptivity analysis on 2-D problems with the regular or irregular distribution of the nodes. The results of multiresolution and h-adaptivity analyses on 2-D linear elastostatics and bending plate problems demonstrate that the improper high-gradient indicator will reduce the convergence property of the h-adaptivity analysis, and that the efficiency of the LDT node refinement strategy is better than SNN, and that the presented h-adaptivity analysis scheme is provided with the validity, stability and good convergence property.展开更多
An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-tri...An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-triangulation(LDT) techniques, which were suitable and effective for h-adaptivity analysis on 2-D problems with the regular or irregular distribution of the nodes. The results of multiresolution and h- adaptivity analyses on 2-D linear elastostatics and bending plate problems demonstrate that the improper high-gradient indicator will reduce the convergence property of the h- adaptivity analysis, and that the efficiency of the LDT node refinement strategy is better than SNN, and that the presented h-adaptivity analysis scheme is provided with the validity, stability and good convergence property.展开更多
A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow t...A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow theory of 3D rigid-plastic mechanics. For the treatments of essential boundary conditions and incompressibility constraint, the boundary singular kernel method and the modified penalty method are utilized, respectively. The arc-tangential friction model is employed to treat the contact conditions. The compression of rectangular blocks, a typical 3D upsetting operation, is analyzed for different friction conditions and the numerical results are compared with those obtained using commercial rigid-plastic FEM (finite element method) software Deform^3D. As results show, when handling 3D plastic deformations, the proposed approach eliminates the need of expensive meshing and remeshing procedures which are unavoidable in conventional FEM and can provide results that are in good agreement with finite element predictions.展开更多
On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is present...On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is presented in this paper. The advantages of the CVRKPM are that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is obtained. The Galerkin weak form is employed to obtain the discretised system equations, and implicit time integration method, which is the Newmark method, is used for time history analysis. And the penalty method is employed to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional elastodynamics are obtained. Three numerical examples of two-dimensional elastodynamics are presented, and the CVRKPM results are compared with the ones of the RKPM and analytical solutions. It is evident that the numerical results of the CVRKPM are in excellent agreement with the analytical solution, and that the CVRKPM has greater precision than the RKPM.展开更多
An interpolating reproducing kernel particle method for two-dimensional (2D) scatter points is introduced. It elim- inates the dependency of gridding in numerical calculations. The interpolating shape function in th...An interpolating reproducing kernel particle method for two-dimensional (2D) scatter points is introduced. It elim- inates the dependency of gridding in numerical calculations. The interpolating shape function in the interpolating repro- ducing kernel particle method satisfies the property of the Kronecker delta function. This method offers a mathematics basis for recognition technology and simulation analysis, which can be expressed as simultaneous differential equations in science or project problems. Mathematical examples are given to show the validity of the interpolating reproducing kernel particle method.展开更多
In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE metho...In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method.展开更多
The Reproducing Kernel Particle Method (RKPM) is one of several new meshless numerical methods de- veloped internationally in recent years. The ideal elasto-plastic constitutive model of material under a Taylor impact...The Reproducing Kernel Particle Method (RKPM) is one of several new meshless numerical methods de- veloped internationally in recent years. The ideal elasto-plastic constitutive model of material under a Taylor impact is characterized by the Jaumann stress- and strain-rates. An updated Lagrangian format is used for the calculation in a nu- merical analysis. With the RKPM, this paper deals with the calculation model for the Taylor impact and deduces the control equation for the impact process. A program was developed to simulate numerically the Taylor impact of projec- tiles composed of several kinds of material. The simulation result is in good accordance with both the test results and the Taylor analysis outcome. Since the meshless method is not limited by meshes, it is believed to be widely applicable to such complicated processes as the Taylor impact, including large deformation and strain and to the study of the dy- namic qualities of materials.展开更多
The complex variable reproducing kernel particle method (CVRKPM) of solving two-dimensional variable coefficient advection-diffusion problems is presented in this paper. The advantage of the CVRKPM is that the shape...The complex variable reproducing kernel particle method (CVRKPM) of solving two-dimensional variable coefficient advection-diffusion problems is presented in this paper. The advantage of the CVRKPM is that the shape function of a two-dimensional problem is formed with a one-dimensional basis function. The Galerkin weak form is employed to obtain the discretized system equation, and the penalty method is used to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional variable coefficient advection-diffusion problems are obtained. Two numerical examples are given to show that the method in this paper has greater accuracy and computational efficiency than the conventional meshless method such as reproducing the kernel particle method (RKPM) and the element- free Galerkin (EFG) method.展开更多
During splitting rolling simulation, re-meshing is necessary to prevent the effect of severe mesh distortion when the conventional finite element method is used. However, extreme deformation cannot be solved by the fi...During splitting rolling simulation, re-meshing is necessary to prevent the effect of severe mesh distortion when the conventional finite element method is used. However, extreme deformation cannot be solved by the finite element method in splitting rolling. The reproducing kernel particle method can solve this problem because the continuum body is discretized by a set of nodes, and a finite element mesh is unnecessary, and there is no explicit limitation of mesh when the metal is split. To ensure stability in the large deformation elastoplastic analysis, the Lagrange material shape function was introduced. The transformation method was utilized to impose the essential boundary conditions. The splitting rolling method was simulated and the simulation results were in accordance with the experimental ones in the literature.展开更多
In this paper, the normal derivative of the radial basis function (RBF) is introduced into the reproducing kernel particle method (RKPM), and the improved reproducing kernel particle method (IRKPM) is proposed. ...In this paper, the normal derivative of the radial basis function (RBF) is introduced into the reproducing kernel particle method (RKPM), and the improved reproducing kernel particle method (IRKPM) is proposed. The method can decrease the errors on the boundary and improve the accuracy and stability of the algorithm. The proposed method is applied to the numerical simulation of piezoelectric materials and the corresponding governing equations are derived. The numerical results show that the IRKPM is more stable and accurate than the RKPM.展开更多
To study the non-linear fracture, a non-linear constitutive model for piezoelectric ceramics was proposed, in which the polarization switching and saturation were taken into account. Based on the model, the non-linear...To study the non-linear fracture, a non-linear constitutive model for piezoelectric ceramics was proposed, in which the polarization switching and saturation were taken into account. Based on the model, the non-linear fracture analysis was implemented using reproducing kernel particle method (RKPM). Using local J-integral as a fracture criterion, a relation curve of fracture loads against electric fields was obtained. Qualitatively, the curve is in agreement with the experimental observations reported in literature. The reproducing equation, the shape function of RKPM, and the transformation method to impose essential boundary conditions for meshless methods were also introduced. The computation was implemented using object-oriented programming method.展开更多
The meshless method is a new numerical technology presented in recent years.It uses the moving least square(MLS) approximation as its shape function,and it is determined by the basic function and weight function.The w...The meshless method is a new numerical technology presented in recent years.It uses the moving least square(MLS) approximation as its shape function,and it is determined by the basic function and weight function.The weight function is the mainly determining factor,so it greatly affects the accuracy of the computational results.The process of cylinder compression was analyzed by using rigid-plastic meshless variational principle and programming reproducing kernel partial method(RKPM),the influence of node number,weight functions and size factor on the solution was discussed and the suitable range of size factor was obtained.Compared with the finite element method(FEM),the feasibility and validity of the method were verified,which proves a good supplement of FEM in this field and provides a good guidance for the application of meshless in actual engineering.展开更多
基金Project supported by the National Natural Science Foundation of China (No.10202018)
文摘An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-triangulation(LDT) tech-niques, which were suitable and effective for h-adaptivity analysis on 2-D problems with the regular or irregular distribution of the nodes. The results of multiresolution and h-adaptivity analyses on 2-D linear elastostatics and bending plate problems demonstrate that the improper high-gradient indicator will reduce the convergence property of the h-adaptivity analysis, and that the efficiency of the LDT node refinement strategy is better than SNN, and that the presented h-adaptivity analysis scheme is provided with the validity, stability and good convergence property.
文摘An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-triangulation(LDT) techniques, which were suitable and effective for h-adaptivity analysis on 2-D problems with the regular or irregular distribution of the nodes. The results of multiresolution and h- adaptivity analyses on 2-D linear elastostatics and bending plate problems demonstrate that the improper high-gradient indicator will reduce the convergence property of the h- adaptivity analysis, and that the efficiency of the LDT node refinement strategy is better than SNN, and that the presented h-adaptivity analysis scheme is provided with the validity, stability and good convergence property.
基金This work was supported by the National Natural Science Foundation of China (No. 50275094).
文摘A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow theory of 3D rigid-plastic mechanics. For the treatments of essential boundary conditions and incompressibility constraint, the boundary singular kernel method and the modified penalty method are utilized, respectively. The arc-tangential friction model is employed to treat the contact conditions. The compression of rectangular blocks, a typical 3D upsetting operation, is analyzed for different friction conditions and the numerical results are compared with those obtained using commercial rigid-plastic FEM (finite element method) software Deform^3D. As results show, when handling 3D plastic deformations, the proposed approach eliminates the need of expensive meshing and remeshing procedures which are unavoidable in conventional FEM and can provide results that are in good agreement with finite element predictions.
基金supported by the National Natural Science Foundation of China (Grant No.10871124)the Innovation Program of Shanghai Municipal Education Commission,China (Grant No.09ZZ99)
文摘On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is presented in this paper. The advantages of the CVRKPM are that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is obtained. The Galerkin weak form is employed to obtain the discretised system equations, and implicit time integration method, which is the Newmark method, is used for time history analysis. And the penalty method is employed to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional elastodynamics are obtained. Three numerical examples of two-dimensional elastodynamics are presented, and the CVRKPM results are compared with the ones of the RKPM and analytical solutions. It is evident that the numerical results of the CVRKPM are in excellent agreement with the analytical solution, and that the CVRKPM has greater precision than the RKPM.
基金supported by the National Natural Science Foundation of China(Grant No.11171208)the Natural Science Foundation of Shanxi Province,China(Grant No.2013011022-6)
文摘An interpolating reproducing kernel particle method for two-dimensional (2D) scatter points is introduced. It elim- inates the dependency of gridding in numerical calculations. The interpolating shape function in the interpolating repro- ducing kernel particle method satisfies the property of the Kronecker delta function. This method offers a mathematics basis for recognition technology and simulation analysis, which can be expressed as simultaneous differential equations in science or project problems. Mathematical examples are given to show the validity of the interpolating reproducing kernel particle method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Special Fund for Basic Scientific Research of Central Colleges of Chang’an University, China (Grant No. CHD2011JC080)
文摘In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method.
基金Project /s50674002 supported by the National Natural Science Foundation of China
文摘The Reproducing Kernel Particle Method (RKPM) is one of several new meshless numerical methods de- veloped internationally in recent years. The ideal elasto-plastic constitutive model of material under a Taylor impact is characterized by the Jaumann stress- and strain-rates. An updated Lagrangian format is used for the calculation in a nu- merical analysis. With the RKPM, this paper deals with the calculation model for the Taylor impact and deduces the control equation for the impact process. A program was developed to simulate numerically the Taylor impact of projec- tiles composed of several kinds of material. The simulation result is in good accordance with both the test results and the Taylor analysis outcome. Since the meshless method is not limited by meshes, it is believed to be widely applicable to such complicated processes as the Taylor impact, including large deformation and strain and to the study of the dy- namic qualities of materials.
基金supported by the National Natural Science Foundation of China (Grant No. 11171208)the Leading Academic Discipline Project of Shanghai City,China (Grant No. S30106)
文摘The complex variable reproducing kernel particle method (CVRKPM) of solving two-dimensional variable coefficient advection-diffusion problems is presented in this paper. The advantage of the CVRKPM is that the shape function of a two-dimensional problem is formed with a one-dimensional basis function. The Galerkin weak form is employed to obtain the discretized system equation, and the penalty method is used to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional variable coefficient advection-diffusion problems are obtained. Two numerical examples are given to show that the method in this paper has greater accuracy and computational efficiency than the conventional meshless method such as reproducing the kernel particle method (RKPM) and the element- free Galerkin (EFG) method.
基金Item Sponsored by National Natural Science Foundation of China(50474016)
文摘During splitting rolling simulation, re-meshing is necessary to prevent the effect of severe mesh distortion when the conventional finite element method is used. However, extreme deformation cannot be solved by the finite element method in splitting rolling. The reproducing kernel particle method can solve this problem because the continuum body is discretized by a set of nodes, and a finite element mesh is unnecessary, and there is no explicit limitation of mesh when the metal is split. To ensure stability in the large deformation elastoplastic analysis, the Lagrange material shape function was introduced. The transformation method was utilized to impose the essential boundary conditions. The splitting rolling method was simulated and the simulation results were in accordance with the experimental ones in the literature.
基金Project supported by the National Natural Science Foundation of China(Grant No.11271234)the Shandong Provincial Science Foundation,China(Grant No.ZR2017MA028)
文摘In this paper, the normal derivative of the radial basis function (RBF) is introduced into the reproducing kernel particle method (RKPM), and the improved reproducing kernel particle method (IRKPM) is proposed. The method can decrease the errors on the boundary and improve the accuracy and stability of the algorithm. The proposed method is applied to the numerical simulation of piezoelectric materials and the corresponding governing equations are derived. The numerical results show that the IRKPM is more stable and accurate than the RKPM.
基金Foundation of Southwest Jiaotong Univer-sity (No.2005B25)
文摘To study the non-linear fracture, a non-linear constitutive model for piezoelectric ceramics was proposed, in which the polarization switching and saturation were taken into account. Based on the model, the non-linear fracture analysis was implemented using reproducing kernel particle method (RKPM). Using local J-integral as a fracture criterion, a relation curve of fracture loads against electric fields was obtained. Qualitatively, the curve is in agreement with the experimental observations reported in literature. The reproducing equation, the shape function of RKPM, and the transformation method to impose essential boundary conditions for meshless methods were also introduced. The computation was implemented using object-oriented programming method.
基金Project(02103) supported by the National Education Department of ChinaProject(200509) supported by the Central South University of Forestry and Technology+1 种基金Project(07031B) supported by Scientific Research Fund of Central South University of Forestry and TechnologyProject supported by the Rewarding Project for Excellent PhD Thesis of Hunan Province,China
文摘The meshless method is a new numerical technology presented in recent years.It uses the moving least square(MLS) approximation as its shape function,and it is determined by the basic function and weight function.The weight function is the mainly determining factor,so it greatly affects the accuracy of the computational results.The process of cylinder compression was analyzed by using rigid-plastic meshless variational principle and programming reproducing kernel partial method(RKPM),the influence of node number,weight functions and size factor on the solution was discussed and the suitable range of size factor was obtained.Compared with the finite element method(FEM),the feasibility and validity of the method were verified,which proves a good supplement of FEM in this field and provides a good guidance for the application of meshless in actual engineering.