期刊文献+
共找到189,695篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of nano TiO_(2) and SiO_(2) on gelation performance of HPAM/PEI gels for high-temperature reservoir conformance improvement
1
作者 Yang Liu Hong-Jun Zhang +5 位作者 Dao-Yi Zhu Zi-Yuan Wang Jun-Hui Qin Qi Zhao Yu-Heng Zhao Ji-Rui Hou 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3819-3829,共11页
Nanoparticles have been widely used in polymer gel systems in recent years to improve gelation performance under high-temperature reservoir conditions. However, different types of nanoparticles have different effects ... Nanoparticles have been widely used in polymer gel systems in recent years to improve gelation performance under high-temperature reservoir conditions. However, different types of nanoparticles have different effects on their gelation performance, which has been little researched. In this study, the high-temperature gelation performance, chemical structure, and microstructure of polymer gels prepared from two nanomaterials (i.e., nano-SiO_(2) and nano-TiO_(2)) were measured. The conventional HPAM/PEI polymer gel system was employed as the control sample. Results showed that the addition of nano-TiO_(2) could significantly enhance the gel strength of HPAM/PEI gel at 80 ℃. The gel strength of the enhanced HPAM/PEI gel with 0.1 wt% nano-TiO_(2) could reach grade I. The system also had excellent high-temperature stability at 150 ℃. The enhanced HPAM/PEI gel with 0.02 wt% nano-TiO_(2) reached the maximum gel strength at 150 ℃ with a storage modulus (G′) of 15 Pa, which can meet the need for efficient plugging. However, the nano-SiO_(2) enhanced HPAM/PEI polymer gel system showed weaker gel strength than that with nano-TiO_(2) at both 80 and 150 ℃ with G′ lower than 5 Pa. Microstructures showed that the nano-TiO_(2) enhanced HPAM/PEI gel had denser three-dimensional (3D) mesh structures, which makes the nano-TiO_(2) enhanced HPAM/PEI gel more firmly bound to water. The FT-IR results also confirmed that the chemical structure of the nano-TiO_(2) enhanced HPAM/PEI gel was more thermally stable than nano-SiO_(2) since there was a large amount of –OH groups on the structure surface. Therefore, nano-TiO_(2) was more suitable as the reinforcing material for HPAM/PEI gels for high-temperature petroleum reservoir conformance improvement. 展开更多
关键词 Nano-TiO_(2) Nano-SiO_(2) Gel strength Polymer gel High-temperature reservoirs.
下载PDF
Improvement and Evaluation of the Latest Version of WRF-Lake at a Deep Riverine Reservoir
2
作者 Shibo GUO Dejun ZHU Yongcan CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第4期682-696,共15页
The WRF-lake vertically one-dimensional(1D)water temperature model,as a submodule of the Weather Research and Forecasting(WRF)system,is being widely used to investigate water-atmosphere interactions.But previous appli... The WRF-lake vertically one-dimensional(1D)water temperature model,as a submodule of the Weather Research and Forecasting(WRF)system,is being widely used to investigate water-atmosphere interactions.But previous applications revealed that it cannot accurately simulate the water temperature in a deep riverine reservoir during a large flow rate period,and whether it can produce sufficiently accurate heat flux through the water surface of deep riverine reservoirs remains uncertain.In this study,the WRF-lake model was improved for applications in large,deep riverine reservoirs by parametric scheme optimization,and the accuracy of heat flux calculation was evaluated compared with the results of a better physically based model,the Delft3D-Flow,which was previously applied to different kinds of reservoirs successfully.The results show:(1)The latest version of WRF-lake can describe the surface water temperature to some extent but performs poorly in the large flow period.We revised WRF-lake by modifying the vertical thermal diffusivity,and then,the water temperature simulation in the large flow period was improved significantly.(2)The latest version of WRF-lake overestimates the reservoir-atmosphere heat exchange throughout the year,mainly because of underestimating the downward energy transfer in the reservoir,resulting in more heat remaining at the surface and returning to the atmosphere.The modification of vertical thermal diffusivity can improve the surface heat flux calculation significantly.(3)The longitudinal temperature variation and the temperature difference between inflow and outflow,which cannot be considered in the 1D WRF-lake,can also affect the water surface heat flux. 展开更多
关键词 Weather Research and Forecasting(WRF)system water–atmosphere interactions riverine reservoir inflow-outflow thermal diffusivity
下载PDF
Hydrocarbon accumulation characteristics in basement reservoirs and exploration targets of deep basement reservoirs in onshore China
3
作者 WANG Zecheng JIANG Qingchun +10 位作者 WANG Jufeng LONG Guohui CHENG Honggang SHI Yizuo SUN Qisen JIANG Hua ABULIMITI Yiming CAO Zhenglin XU Yang LU Jiamin HUANG Linjun 《Petroleum Exploration and Development》 SCIE 2024年第1期31-43,共13页
Based on the global basement reservoir database and the dissection of basement reservoirs in China,the characteristics of hydrocarbon accumulation in basement reservoirs are analyzed,and the favorable conditions for h... Based on the global basement reservoir database and the dissection of basement reservoirs in China,the characteristics of hydrocarbon accumulation in basement reservoirs are analyzed,and the favorable conditions for hydrocarbon accumulation in deep basement reservoirs are investigated to highlight the exploration targets.The discovered basement reservoirs worldwide are mainly buried in the Archean and Precambrian granitic and metamorphic formations with depths less than 4500 m,and the relatively large reservoirs have been found in rift,back-arc and foreland basins in tectonic active zones of the Meso-Cenozoic plates.The hydrocarbon accumulation in basement reservoirs exhibits the characteristics in three aspects.First,the porous-fractured reservoirs with low porosity and ultra-low permeability are dominant,where extensive hydrocarbon accumulation occurred during the weathering denudation and later tectonic reworking of the basin basement.High resistance to compaction allows the physical properties of these highly heterogeneous reservoirs to be independent of the buried depth.Second,the hydrocarbons were sourced from the formations outside the basement.The source-reservoir assemblages are divided into contacted source rock-basement and separated source rock-basement patterns.Third,the abnormal high pressure in the source rock and the normal–low pressure in the basement reservoirs cause a large pressure difference between the source rock and the reservoirs,which is conducive to the pumping effect of hydrocarbons in the deep basement.The deep basement prospects are mainly evaluated by the factors such as tectonic activity of basement,source-reservoir combination,development of large deep faults(especially strike-slip faults),and regional seals.The Precambrian crystalline basements at the margin of the intracontinental rifts in cratonic basins,as well as the Paleozoic folded basements and the Meso-Cenozoic fault-block basements adjacent to the hydrocarbon generation depressions,have favorable conditions for hydrocarbon accumulation,and thus they are considered as the main targets for future exploration of deep basement reservoirs. 展开更多
关键词 basement reservoir granite reservoir source-reservoir assemblage pumping effect strike-slip fault deep basement reservoir
下载PDF
A review of reservoir damage during hydraulic fracturing of deep and ultra-deep reservoirs
4
作者 Kun Zhang Xiong-Fei Liu +6 位作者 Dao-Bing Wang Bo Zheng Tun-Hao Chen Qing Wang Hao Bai Er-Dong Yao Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期384-409,共26页
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u... Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage. 展开更多
关键词 Artificial fracture Deep and ultra-deep reservoir Fracture conductivity Fracturing fluid Hydraulic fracturing reservoir damage
下载PDF
Reservoir Quality Controlling Factor of the Asmari Reservoir in an Oil Field in Dezful Embayment, SW Iran
5
作者 Katayoon Rezaeeparto Leila Fazli Somayeh Parham 《Open Journal of Geology》 CAS 2024年第2期259-278,共20页
The Asmari Formation Oligo-Miocene in age is one of the most important reservoir rocks in SW Iran and Zagros basin and composed of carbonate rocks and locally sandstones and evaporates. In this research, reservoir qua... The Asmari Formation Oligo-Miocene in age is one of the most important reservoir rocks in SW Iran and Zagros basin and composed of carbonate rocks and locally sandstones and evaporates. In this research, reservoir quality controlling factors have been investigated in a well in one of the oil fields in Dezful Embayment, SW Iran. Based on this research, depositional environment, diagenesis and fracturing have been affected on reservoir quality. 3 distinct depositional settings can be recognized in the studied interval including tidal flat, lagoon, and shoal. Among these depositional setting, shoal environment with ooid grainstone microfacies along with interparticle porosity shows good reservoir characteristics. Diagenetic processes also play an important role on reservoir quality;dolomitization and dissolution have positive effects on porosity and enhances reservoir quality, while cementation, anhydritization and compaction have negative effect on it. Fracturing is another important factor affected on the carbonate reservoirs especially in the Asmari Formation. 展开更多
关键词 Asmari Formation Dezful Embayment reservoir Quality DIAGENESIS Depositional Environment
下载PDF
Microplastics in sediment of the Three Gorges Reservoir:abundance and characteristics under different environmental conditions
6
作者 Wang LI Bo ZU +2 位作者 Yiwei LIU Juncheng GUO Jiawen LI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期101-112,共12页
Freshwater microplastic pollution is an urgent issue of global concern,and research on the distribution in reservoirs is lacking.We investigated the microplastic pollution levels in wet sediments collected from the Th... Freshwater microplastic pollution is an urgent issue of global concern,and research on the distribution in reservoirs is lacking.We investigated the microplastic pollution levels in wet sediments collected from the Three Gorges Reservoir,the largest reservoir of China.Results show that microplastics were ubiquitous in the sediments of the Three Gorges Reservoir,and their abundance ranged from 59 to 276 pp/kg(plastic particles per kg,dry weight).Economic development and total population were important factors affecting the spatial heterogeneity of microplastic abundance,and the contribution of large cities along the reservoir to microplastic pollution should be paid with more attention.Fibrous microplastics were the most abundant type of microplastic particles in reservoir sediments,whereas polystyrene,polypropylene,and polyamide were the main types of polymers.The apparent spatial heterogeneity in morphology and color of microplastics is attributed to different anthropogenic or landbased pollution sources.Moreover,the accumulation of microplastics near the inlet of tributaries reflects the role of potential contributors of tributaries.More importantly,multiple bisphenols(BPs)and heavy metals detected at the microplastic surfaces indicate that microplastics can act as carriers of these pollutants in the environment in the same way as sediments did,which may alter the environmental fate and toxicity of these pollutants.Therefore,we conclude that the Three Gorges Reservoir had been contaminated with microplastics,which posed a stress risk for organisms who ingest them along with their associated pollutants(BPs,heavy metals). 展开更多
关键词 microplastics Three Gorges reservoir SEDIMENT BISPHENOL heavy metal
下载PDF
Anti-aging performance improvement and enhanced combustion efficiency of boron via the coating of PDA
7
作者 Shuai Ma Qinghai Shu +4 位作者 Mengyang Zhang Hongyu Huang Yansong Shi Xijuan Lv Shuai Zhao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期399-410,共12页
Boron is an ambitious fuel in energetic materials since its high heat release values,but its application is prohibited by low combustion efficiency and oxidization during storage.The polydopamine(PDA)was introduced in... Boron is an ambitious fuel in energetic materials since its high heat release values,but its application is prohibited by low combustion efficiency and oxidization during storage.The polydopamine(PDA)was introduced into boron particles,investigating the impact of PDA content on the energetic behavior of boron.The results indicated that the PDA coating formed a fishing net structure on the surface of boron particles.The heat release results showed that the combustion calorific value of B@PDA was higher than that of the raw boron.Specifically,the actual combustion heat of boron powder in B@10%PDA increased by 38.08%.Meanwhile,the DSC peak temperature decreased by 100.65℃under similar oxidation rate compared to raw boron.Simultaneously,the B@PDA@AP and B@AP composites were prepared,and their combustion properties were evaluated.It was demonstrated that B@10%PDA@AP exhibited superior performance in terms of peak pressure and burning time,respectively.The peak pressure is 12.43 kPa more than B@AP and burning time is 2.22 times higher than B@AP.Therefore,the coating of PDA effectively inhibits the oxidization of boron during storage and enhances the energetic behavior of boron and corresponding composites. 展开更多
关键词 Boron particles POLYDOPAMINE Anti-aging performance improvement Heat release
下载PDF
An approximate analytical model for unconventional reservoir considering variable matrix blocks and simultaneous matrix depletion
8
作者 Kai-Xuan Qiu Jia Li +2 位作者 Dong Feng Shi-Ming Wei Gang Lei 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期352-365,共14页
In regard to unconventional oil reservoirs,the transient dual-porosity and triple-porosity models have been adopted to describe the fluid flow in the complex fracture network.It has been proven to cause inaccurate pro... In regard to unconventional oil reservoirs,the transient dual-porosity and triple-porosity models have been adopted to describe the fluid flow in the complex fracture network.It has been proven to cause inaccurate production evaluations because of the absence of matrix-macrofracture communication.In addition,most of the existing models are solved analytically based on Laplace transform and numerical inversion.Hence,an approximate analytical solution is derived directly in real-time space considering variable matrix blocks and simultaneous matrix depletion.To simplify the derivation,the simultaneous matrix depletion is divided into two parts:one part feeding the macrofractures and the other part feeding the microfractures.Then,a series of partial differential equations(PDEs)describing the transient flow and boundary conditions are constructed and solved analytically by integration.Finally,a relationship between oil rate and production time in real-time space is obtained.The new model is verified against classical analytical models.When the microfracture system and matrix-macrofracture communication is neglected,the result of the new model agrees with those obtained with the dual-porosity and triple-porosity model,respectively.Certainly,the new model also has an excellent agreement with the numerical model.The model is then applied to two actual tight oil wells completed in western Canada sedimentary basin.After identifying the flow regime,the solution suitably matches the field production data,and the model parameters are determined.Through these output parameters,we can accurately forecast the production and even estimate the petrophysical properties. 展开更多
关键词 Analytical solution Unconventional reservoir Variable matrix Simultaneous flow
下载PDF
Enhancing Private Healthcare Effectiveness in Lagos State, Nigeria: An Overview of the Effect of Quality Improvement Initiatives and Implications for Sustainable Healthcare Delivery
9
作者 Nnenna Mba-Oduwusi Ifesinachi Eze +11 位作者 Tochukwu Osuji Maxwell Obubu Tolulope Oyekanmi Oluwatosin Kolade Ozioma Oguguah Jane Martins Nkata Chuku Alozie Ananaba Rodio Diallo Firdausi Umar Sadiq Emmanuella Zamba Abiola Idowu 《Health》 2024年第2期93-104,共12页
Background: Nigeria, a nation grappling with rapid population growth, economic intricacies, and complex healthcare challenges, particularly in Lagos State, the economic hub and most populous state, faces the challenge... Background: Nigeria, a nation grappling with rapid population growth, economic intricacies, and complex healthcare challenges, particularly in Lagos State, the economic hub and most populous state, faces the challenge of ensuring quality healthcare access. The overview of the effect of quality improvement initiatives in this paper focuses on private healthcare providers in Lagos State, Nigeria. The study assesses the impact of donor-funded quality improvement projects on these private healthcare facilities. It explores the level of participation, perceived support, and tangible effects of the initiatives on healthcare delivery within private healthcare facilities. It also examines how these initiatives influence patient inflow and facility ratings, and bring about additional benefits and improvements, provides insights into the challenges faced by private healthcare providers in implementing quality improvement projects and elicits recommendations for improving the effectiveness of such initiatives. Methods: Qualitative research design was employed for in-depth exploration, utilizing semi-structured interviews. Private healthcare providers in Lagos involved in the SP4FP Quality Improvement Project were purposively sampled for diversity. Face-to-face interviews elicited insights into participation, perceived support, and project effects. Questions covered participation levels, support perception, changes observed, challenges faced, and recommendations. Thematic analysis identified recurring themes from interview transcripts. Adherence to ethical guidelines ensured participant confidentiality and informed consent. Results: Respondents affirmed active involvement in the SP4FP Quality Improvement Project, echoing literature emphasizing private-sector collaboration with the public sector. While acknowledging positive influences on facility ratings, respondents highlighted challenges within the broader Nigerian healthcare landscape affecting patient numbers. Respondents cited tangible improvements, particularly in staff management and patient care processes, validating the positive influence of quality improvement projects. Financial constraints emerged as a significant challenge, aligning with existing literature emphasizing the pragmatic difficulties faced by private healthcare providers. Conclusions: This study illuminates the complex landscape of private healthcare provision in Lagos State, emphasizing the positive impact of donor-funded quality improvement projects. The findings provide nuanced insights, guiding policymakers, healthcare managers, and practitioners toward collaborative, sustainable improvements. As Nigeria progresses, these lessons will be crucial in shaping healthcare policies prioritizing population well-being. 展开更多
关键词 Private Healthcare Quality improvement Projects Donor-Funded Initiatives Healthcare Delivery Lagos State NIGERIA
下载PDF
Petrophysical Evaluation of Cape Three Points Reservoirs
10
作者 Striggner Bedu-Addo Sylvester Kojo Danuor Larry Pax Chegbeleh 《International Journal of Geosciences》 CAS 2024年第2期162-179,共18页
The findings of a study to ascertain and assess the petrophysical characteristics of Cape Three Points reservoirs in the Western basin with a view to describe the reservoir quantitatively using Well Logs, Petrel and T... The findings of a study to ascertain and assess the petrophysical characteristics of Cape Three Points reservoirs in the Western basin with a view to describe the reservoir quantitatively using Well Logs, Petrel and Techlog. The investigated characteristics, which were all deduced from geophysical wire-line logs, include lithology, porosity, permeability, fluid saturation, and net to gross thickness. To characterise the reservoir on the field, a suite of wire-line logs including gamma ray, resistivity, spontaneous potential, and density logs for three wells (WELL_1X, WELL_2X, and WELL_3X) from the Tano Cape Three Point basin were studied. The analyses that were done included lithology delineation, reservoir identification, and petrophysical parameter determination for the identified reservoirs. The tops and bases of the three wells analysed were marked at a depth of 1203.06 - 2015.64 m, 3863.03 - 4253.85 m and 2497.38 - 2560.32 m respectively. There were no hydrocarbons in the reservoirs from the studies. The petrophysical parameters computed for each reservoir provided porosities of 13%, 3% and 11% respectively. The water saturation also determined for these three wells (WELL_1X, WELL_2X and WELL_3X) were 94%, 95% and 89% respectively. These results together with the behaviour of the density and neutron logs suggested that these wells are wildcat wells. 展开更多
关键词 Petrophysical Cape Three Points reservoirS
下载PDF
Growth, Population Parameters and Stock Status of Sarotherodon galilaeus in Samandeni Reservoir, Burkina Faso
11
作者 Nomwine Da Raymond Ouedraogo +1 位作者 Mahamoudou Minoungou Adama Oueda 《Open Journal of Ecology》 2024年第4期257-273,共17页
Mango tilapia, Sarotherodon galilaeus is one of the most caught fish species in the Samandeni multi-species fishing sites of which, few data on its biology and exploitation are available. The study aimed to Assess the... Mango tilapia, Sarotherodon galilaeus is one of the most caught fish species in the Samandeni multi-species fishing sites of which, few data on its biology and exploitation are available. The study aimed to Assess the stock status of S. galilaeus. Sampling was conducted from March, 2021 to February 2022 based on commercial fish catches to analyze growth parameters, first sexual maturity size and harvest status of the stock. A total of 572 specimens including 297 females and 275 males were examined. The stock assessment was performed by using the Length based Bayesian method of Biomass (LBB) and that of growth by the ELEFAN method. The growth parameters showed a seasonality of growth and females appeared to grow faster than males. On the other hand, males had a greater asymptotic length than females. Results on the estimated length of fish at first maturity showed that females firstly reached the maturity compared to males. The relative biomass (B/B<sub>0</sub>) estimated for the stock was higher than the relative biomass that produces maximum sustainable yield (B<sub>MSY</sub>/B<sub>0</sub>) indicating healthy biomass. In addition, the length at first sexual maturity was less than the length at the first catch, indicating the absence of overfishing of growth. In addition, extending the study to the various stocks of the reservoir would be important for the sustainable management of the Samandeni high economic fishing area. 展开更多
关键词 GROWTH Stock Status Sarotherodon galilaeus Samandeni reservoir MATURITY
下载PDF
Selection criteria of MPOB-Angola germplasm collection for yield improvement of the oil palm
12
作者 A.Norziha Z.Zamri +2 位作者 Y.Zulkifli A.M.Fadila M.Marhalil 《Oil Crop Science》 CSCD 2024年第1期20-28,共9页
Oil palm germplasm collected from Angola,Africa in 1991 were subjected to genetic variability potential studies.The collection was planted in the form of open-pollinated families as trials at the Malaysian Palm Oil Bo... Oil palm germplasm collected from Angola,Africa in 1991 were subjected to genetic variability potential studies.The collection was planted in the form of open-pollinated families as trials at the Malaysian Palm Oil Board(MPOB)Kluang Research Station,Johor,Malaysia,in 1994.Dura palms from 52 families and tenera palms from 44 families of MPOB-Angola were evaluated for their bunch yield and bunch quality components.The objectives of this study were to determine the genetic variability among the families and performance of MPOB-Angola germplasm for yield improvement.The analysis of variance(ANOVA)revealed highly significant differences between the dura and tenera families for most of the traits,suggesting the presence of high genetic variability,which is essential for breeding programmes.Among the duras,family AGO 02.02 displayed the best yield performance,with a high fresh fruit bunch,oil yield and total economic product at 240.40,29.46 and 37.93 kg palm^(-1)year^(-1),respectively.As for the teneras,family AGO 03.04 recorded the highest FFB yield and oil yield at 249.25 and 45.22 kg palm^(-1)year^(-1),respectively.Besides that,several families with big fruit sizes or producing a mean fruit weight of 14-17 g were also identified.Both dura and tenera from AGO 01.01 recorded the highest oil to bunch(O/B)of 17.76%and 28.65%,respectively.These findings will facilitate the selection of palms from the MPOB-Angola germplasm for future breeding programmes. 展开更多
关键词 Oil palm GERMPLASM Genetic variability HERITABILITY Yield improvement
下载PDF
Air pressure law of a reservoir constructed in karst sinkholes
13
作者 YU Bo TAI Shengping +4 位作者 ZHENG Kexun CHEN Shiwan HAN Xiao WANG Senlin ZUO Shuangying 《Journal of Mountain Science》 SCIE CSCD 2024年第3期1048-1057,共10页
Karst sinkholes with natural negative landform provide favorable conditions for the pumped storage reservoir construction for less excavation work.However,the construction of the reservoir would plug the natural karst... Karst sinkholes with natural negative landform provide favorable conditions for the pumped storage reservoir construction for less excavation work.However,the construction of the reservoir would plug the natural karst channels for water and air,which would cause remarkable air pressure in karst channels when the groundwater level fluctuates.A large laboratory simulation test was carried out to study the air pressure variation of a reservoir built on the karst sinkhole.The air pressure in the karst channel and inside the model was monitored during the groundwater rising and falling process.Result showed that the variation of air pressure in the karst channel and the surrounding rock exhibited a high degree of similarity.The air pressure increased rapidly at the initial stage of water level rising,followed by a slight decrease,then the air pressure increased sharply when the water level approached the top of the karst cave.The initial peak of air pressure and the final peak of air pressure were defined,and both air pressure peaks were linearly increasing with the water level rising rate.The negative air pressure was also analyzed during the drainage process,which was linearly correlated with the water level falling rate.The causes of air pressure variation in karst channels of a pumped storage reservoir built on the karst sinkhole were discussed.The initial rapid increase,then slight decrease and final sudden increase of air pressure were controlled by the combined effects of air compression in karst channel and air seepage into the surrounding rock.For the drainage process,the instant negative air pressure and gradual recovering of air pressure were controlled by the combined effects of negative air pressure induced by water level falling and air supply from surrounding rock.This work could provide valuable reference for the reservoir construction in karst area. 展开更多
关键词 Simulation test Karst sinkhole Pumped storage reservoir Air pressure Flow rate
原文传递
Lightweight Intrusion Detection Using Reservoir Computing
14
作者 Jiarui Deng Wuqiang Shen +4 位作者 Yihua Feng Guosheng Lu Guiquan Shen Lei Cui Shanxiang Lyu 《Computers, Materials & Continua》 SCIE EI 2024年第1期1345-1361,共17页
The blockchain-empowered Internet of Vehicles(IoV)enables various services and achieves data security and privacy,significantly advancing modern vehicle systems.However,the increased frequency of data transmission and... The blockchain-empowered Internet of Vehicles(IoV)enables various services and achieves data security and privacy,significantly advancing modern vehicle systems.However,the increased frequency of data transmission and complex network connections among nodes also make them more susceptible to adversarial attacks.As a result,an efficient intrusion detection system(IDS)becomes crucial for securing the IoV environment.Existing IDSs based on convolutional neural networks(CNN)often suffer from high training time and storage requirements.In this paper,we propose a lightweight IDS solution to protect IoV against both intra-vehicle and external threats.Our approach achieves superior performance,as demonstrated by key metrics such as accuracy and precision.Specifically,our method achieves accuracy rates ranging from 99.08% to 100% on the Car-Hacking dataset,with a remarkably short training time. 展开更多
关键词 Echo state network intrusion detection system Internet of Vehicles reservoir computing
下载PDF
Turbidite Dynamics and Hydrocarbon Reservoir Formation in the Tano Basin: A Coastal West African Perspective
15
作者 Michael K. Appiah Sylvester K. Danuor +1 位作者 Striggner Bedu-Addo Alfred K. Bienibuor 《International Journal of Geosciences》 CAS 2024年第2期137-161,共25页
This study examines the turbidite dynamics and hydrocarbon reservoir formation in Ghana’s Tano Basin, which is located in coastal West Africa. Through an exploration of geological processes spanning millions of years... This study examines the turbidite dynamics and hydrocarbon reservoir formation in Ghana’s Tano Basin, which is located in coastal West Africa. Through an exploration of geological processes spanning millions of years, we uncover key factors shaping hydrocarbon accumulation, including source rock richness, temperature, pressure, and geological structures. The research offers valuable insights applicable to exploration, management, and sustainable resource exploitation in coastal West Africa. It facilitates the identification of exploration targets with higher hydrocarbon potential, enables the anticipation of reservoir potential within the Tano Basin, and assists in tailoring exploration and management strategies to specific geological conditions of the Tano Basin. Analysis of fluvial channels sheds light on their impact on landscape formation and hydrocarbon exploration. The investigation into turbidite systems unveils intricate interactions involving tectonics, sea-level fluctuations, and sedimentation patterns, influencing the development of reservoirs. An understanding of sediment transport and depositional settings is essential for efficient reservoir management. Geomorphological features, such as channels, submarine canyons, and distinct channel types, are essential in this situation. A detailed examination of turbidite channel structures, encompassing canyons, channel complexes, convex channels, and U-shaped channels, provides valuable insights and aids in identifying exploration targets like basal lag, channel levees, and lobes. These findings underscore the enduring significance of turbidite systems as conduits for sediment transport, contributing to enhanced reservoir management and efficient hydrocarbon production. The study also highlights how important it is to examine the configuration of sedimentary layers, stacking patterns, and angular laminated facies to identify turbidites, understand reservoir distribution, and improve well design. The dynamic nature of turbidite systems, influenced by basin characteristics such as shape and slope, is highlighted. The research provides valuable insights essential for successful hydrocarbon exploration, reservoir management, and sustainable resource exploitation in coastal West Africa. 展开更多
关键词 reservoir Characterization Tano Basin Seismic Data Hydrocarbon Potential Channels TURBIDITES
下载PDF
Impacts of proppant distribution on development of tight oil reservoirs with threshold pressure gradient
16
作者 Ming Yue Wei-Yao Zhu +3 位作者 Fei-Fei Gou Tian-Ru Song Yu-Chun You Qi-Tao Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期445-457,共13页
Field evidence indicates that proppant distribution and threshold pressure gradient have great impacts on well productivity.Aiming at the development of unconventional oil reservoirs in Triassic Chang-7 Unit,Ordos Bas... Field evidence indicates that proppant distribution and threshold pressure gradient have great impacts on well productivity.Aiming at the development of unconventional oil reservoirs in Triassic Chang-7 Unit,Ordos Basin of China,we presented an integrated workflow to investigate how(1)proppant placement in induced fracture and(2)non-linear flow in reservoir matrix would affect well productivity and fluid flow in the reservoir.Compared with our research before(Yue et al.,2020),here we extended this study into the development of multi-stage fractured horizontal wells(MFHWs)with large-scale complicated fracture geometry.The integrated workflow is based on the finite element method and consists of simulation models for proppant-laden fluid flow,fracture flow,and non-linear seepage flow,respectively.Simulation results indicate that the distribution of proppant inside the induced cracks significantly affects the productivity of the MFHW.When we assign an idealized proppant distribution instead of the real distribution,there will be an overestimation of 44.98%in daily oil rate and 30.63%in cumulative oil production after continuous development of 1000 days.Besides,threshold pressure gradient(TPG)also significantly affects the well performance in tight oil reservoirs.If we simply apply linear Darcy’s law to the reservoir matrix,the overall cumulative oil production can be overrated by 77%after 1000 days of development.In general,this research provides new insights into the development of tight oil reservoirs with TPG and meanwhile reveals the significance of proppant distribution and non-linear fluid flow in the production scenario design. 展开更多
关键词 Proppant distribution Tight oil reservoir Multi-stage fractured horizontal well Threshold pressure gradient Moving boundary
下载PDF
A Transient-Pressure-Based Numerical Approach for Interlayer Identification in Sand Reservoirs
17
作者 Hao Luo Haibo Deng +4 位作者 Honglin Xiao Shaoyang Geng Fu Hou Gang Luo Yaqi Li 《Fluid Dynamics & Materials Processing》 EI 2024年第3期641-659,共19页
Almost all sandstone reservoirs contain interlayers. The identification and characterization of these interlayers iscritical for minimizing the uncertainty associated with oilfield development and improving oil and ga... Almost all sandstone reservoirs contain interlayers. The identification and characterization of these interlayers iscritical for minimizing the uncertainty associated with oilfield development and improving oil and gas recovery.Identifying interlayers outside wells using identification methods based on logging data and machine learning isdifficult and seismic-based identification techniques are expensive. Herein, a numerical model based on seepageand well-testing theories is introduced to identify interlayers using transient pressure data. The proposed modelrelies on the open-source MATLAB Reservoir Simulation Toolbox. The effects of the interlayer thickness, position,and width on the pressure response are thoroughly investigated. A procedure for inverting interlayer parametersin the reservoir using the bottom-hole pressure is also proposed. This method uses only transient pressuredata during well testing and can effectively identify the interlayer distribution near the wellbore at an extremelylow cost. The reliability of the model is verified using effective oilfield examples. 展开更多
关键词 Sand reservoir interlayer identification transient pressure analysis numerical well test
下载PDF
Research on Soil Conservation and Improvement Technology in Zhaoyang District
18
作者 Jing YANG Shifu ZHONG +8 位作者 Liting FANG Wei YAN Shixian PU Dianli MA Wenkai XIA Haohan GONG Mengsheng ZHANG Yeming FU Xia NI 《Agricultural Biotechnology》 2024年第1期20-23,共4页
The environment of tobacco-growing soil directly affects the yield and quality of tobacco leaves.In order to solve problems of tobacco-growing soil degradation,low organic matter content and unbalanced soil nutrient s... The environment of tobacco-growing soil directly affects the yield and quality of tobacco leaves.In order to solve problems of tobacco-growing soil degradation,low organic matter content and unbalanced soil nutrient supply and promote sustainable and healthy development of tobacco production,this paper comprehensively discussed conservation and improvement techniques of tobacco-growing soil based on existing problems in Zhaoyang District,aiming to provide reference for tobacco-growing soil conservation. 展开更多
关键词 Tobacco-growing soil CONSERVATION Flue-cured tobacco FERTILIZATION improvement
下载PDF
Simulation of Underground Reservoir Stability of Pumped Storage Power Station Based on Fluid-Structure Coupling
19
作者 Peng Qiao Shuangshuang Lan +1 位作者 Hongbiao Gu Zhengtan Mao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1381-1399,共19页
Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its co... Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its construction environment is more complex than that of a traditional reservoir.In particular,the stability of the rock strata in the underground reservoirs is affected by the seepage pressure and rock stress,which presents some challenges in achieving engineering safety and stability.Using the advantages of the numerical simulation method in dealing deal with nonlinear problems in engineering stability,in this study,the stability of the underground reservoir of the Shidangshan(SDS)pumped storage power station was numerically calculated and quantitatively analyzed based on fluid-structure coupling theory,providing an important reference for the safe operation and management of the underground reservoir.First,using the COMSOL software,a suitablemechanicalmodel was created in accordance with the geological structure and project characteristics of the underground reservoir.Next,the characteristics of the stress field,displacement field,and seepage field after excavation of the underground reservoir were simulated in light of the seepage effect of groundwater on the nearby rock of the underground reservoir.Finally,based on the construction specifications and Molar-Coulomb criterion,a thorough evaluation of the stability of the underground reservoir was performed through simulation of the filling and discharge conditions and anti-seepage strengthening measures.The findings demonstrate that the numerical simulation results have a certain level of reliability and are in accordance with the stress measured in the project area.The underground reservoir excavation resulted in a maximum displacement value of the rock mass around the caverns of 3.56 mm in a typical section,and the safety coefficient of the parts,as determined using the Molar-Coulomb criterion,was higher than 1,indicating that the project as a whole is in a stable state. 展开更多
关键词 Underground reservoir fluid-structure coupling numerical simulation pumped storage power station filling and discharge
下载PDF
The effects of various factors on spontaneous imbibition in tight oil reservoirs
20
作者 Cheng Liu Tian-Ru Wang +3 位作者 Qing You Yue-Chun Du Guang Zhao Cai-Li Dai 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期315-326,共12页
Slickwater fracturing fluids have gained widespread application in the development of tight oil reservoirs. After the fracturing process, the active components present in slickwater can directly induce spontaneous imb... Slickwater fracturing fluids have gained widespread application in the development of tight oil reservoirs. After the fracturing process, the active components present in slickwater can directly induce spontaneous imbibition within the reservoir. Several variables influence the eventual recovery rate within this procedure, including slickwater composition, formation temperature, degree of reservoir fracture development, and the reservoir characteristics. Nonetheless, the underlying mechanisms governing these influences remain relatively understudied. In this investigation, using the Chang-7 block of the Changqing Oilfield as the study site, we employ EM-30 slickwater fracturing fluid to explore the effects of the drag-reducing agent concentration, imbibition temperature, core permeability, and core fracture development on spontaneous imbibition. An elevated drag-reducing agent concentration is observed to diminish the degree of medium and small pore utilization. Furthermore, higher temperatures and an augmented permeability enhance the fluid flow properties, thereby contributing to an increased utilization rate across all pore sizes. Reduced fracture development results in a lower fluid utilization across diverse pore types. This study deepens our understanding of the pivotal factors affecting spontaneous imbibition in tight reservoirs following fracturing. The findings act as theoretical, technical, and scientific foundations for optimizing fracturing strategies in tight oil reservoir transformations. 展开更多
关键词 Tight oil reservoir Spontaneous imbibition Nuclear magnetic resonance Slickwater fracturing fluid Fluid utilization degree
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部