Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore charact...Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.展开更多
The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved ...The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.展开更多
China is home to shales of three facies:Marine shale,continental shale,and marine-continental transitional shale.Different types of shale gas are associated with significantly different formation conditions and major ...China is home to shales of three facies:Marine shale,continental shale,and marine-continental transitional shale.Different types of shale gas are associated with significantly different formation conditions and major controlling factors.This study compared the geological characteristics of various shales and analyzed the influences of different parameters on the formation and accumulation of shale gas.In general,shales in China’s several regions exhibit high total organic carbon(TOC)contents,which lays a sound material basis for shale gas generation.Marine strata generally show high degrees of thermal evolution.In contrast,continental shales manifest low degrees of thermal evolution,necessitating focusing on areas with relatively high degrees of thermal evolution in the process of shale gas surveys for these shales.The shales of the Wufeng and Silurian formations constitute the most favorable shale gas reservoirs since they exhibit the highest porosity among the three types of shales.These shales are followed by those in the Niutitang and Longtan formations.In contrast,the shales of the Doushantuo,Yanchang,and Qingshankou formations manifest low porosities.Furthermore,the shales of the Wufeng and Longmaxi formations exhibit high brittle mineral contents.Despite a low siliceous mineral content,the shales of the Doushantuo Formation feature a high carbonate mineral content,which can increase the shales’brittleness to some extent.For marine-continental transitional shales,where thin interbeds of tight sandstone with unequal thicknesses are generally found,it is recommended that fracturing combined with drainage of multiple sets of lithologic strata should be employed to enhance their shale gas production.展开更多
Taking the Paleogene Shahejie Formation in Nanpu sag of Bohai Bay Basin as an example,this study comprehensively utilizes seismic,mud logging,well logging,physical property analysis and core thin section data to inves...Taking the Paleogene Shahejie Formation in Nanpu sag of Bohai Bay Basin as an example,this study comprehensively utilizes seismic,mud logging,well logging,physical property analysis and core thin section data to investigate the metamorphic reservoir formed by contact metamorphism after igneous rock intrusion.(1)A geological model of the igneous intrusion contact met amorphic system is proposed,which can be divided into five structural layers vertically:the intrusion,upper metamorphic aureole,lower metamorphic aureole,normal sedimentary layers on the roof and floor.(2)The intrusion is characterized by xenoliths indicating intrusive facies at the top,regular changes in rock texture and mineral crystallization from the center to the edge on a microscopic scale,and low-angle oblique penetrations of the intrusion through sedimentary strata on a macroscopic scale.The metamorphic aureole has characteristics such as sedimentary rocks as the host rock,typical palimpsest textures developed,various low-temperature thermal metamorphic minerals developed,and medium-low grade thermal metamorphic rocks as the lithology.(3)The reservoir in contact metamorphic aureole has two types of reservoir spaces:matrix pores and fractures.The matrix pores are secondary"intergranular pores"distributed around metamorphic minerals after thermal metamorphic transformation in metasandstones.The fractures are mainly structural fractures and intrusive compressive fractures in metamudstones.The reservoirs generally have three spatial distribution characteristics:layered,porphyritic and hydrocarbon impregnation along fracture.(4)The distribution of reservoirs in the metamorphic aureole is mainly controlled by the intensity of thermal baking.Furthermore,the distribution of favorable reservoirs is controlled by the coupling of favorable lithofacies and thermal contact metamorphism,intrusive compression and hydrothermal dissolution.The proposal and application of the geological model of the intrusion contact metamorphic system are expected to promote the discovery of exploration targets of contact metamorphic rock in Nanpu sag,and provide a reference for the study and exploration of deep contact metamorphic rock reservoirs in the Bohai Bay Basin.展开更多
In order to clarify the reservoir characteristics and main controlling factors of the flow three section of the K oil field in the Weixinan Depression, a study on the reservoir characteristics and main controlling fac...In order to clarify the reservoir characteristics and main controlling factors of the flow three section of the K oil field in the Weixinan Depression, a study on the reservoir characteristics and main controlling factors of the flow three section of the K oil field in the Weixinan Depression has been carried out by utilizing the data of cores, casting thin sections, physical property tests and logging wells. The results show that the lithology of the reservoir in the flow three section of the study area is dominated by coarse sandstone and medium sandstone, followed by conglomerate-bearing sandstone and sand conglomerate. The porosity is mainly distributed in the range of medium-high porosity, and the permeability is mainly medium seepage, and the overall physical properties are good. The three sections of the stream in the study area mainly include four sedimentary microphases, namely, underwater diversion channel, estuarine dam, mat sand and inter-diversion bay. The underwater diversion channel has the best physical properties, characterized by coarse grains and low mud content. The medium and coarse sand content of various lithologic reservoirs is the main factor in the formation of high-quality reservoirs. Rock-forming action is an important factor affecting the physical properties of local reservoirs, comparing the compaction, cementation and dissolution between different sedimentary microphases, the underwater diverging river has the lowest rate of compaction and pore reduction, the highest rate of pore increase by dissolution, and the best physical properties. Therefore, the weakly cemented-strongly dissolved coarse sandstone phase developed in the microphase of the underwater diversion channel in section 3 of the flow in the study area is the most favorable reservoir.展开更多
Based on the sheet, scanning electron microscope and high pressure mercury analysis method, this paper takes Jiyuan oilfield-Ma Jia mountain district 4 5 sandstone reservoir as the research object, from the reservoir ...Based on the sheet, scanning electron microscope and high pressure mercury analysis method, this paper takes Jiyuan oilfield-Ma Jia mountain district 4 5 sandstone reservoir as the research object, from the reservoir petrology, pore type and porosity, permeability, the system analyzed the reservoir characteristics and its control factors. The results show that the sandstone in the 4 5 section of Baoziwan-Majiashan area of Jiyuan oilfield is fine in size and high in filling content. The pore types were dominated by intergranular pores and dissolved pores, with a low face rate. The reservoir property is relatively poor, with mean porosity of 11.11% and mean permeability of 1.16 × 10<sup>−</sup><sup>3</sup> µm<sup>2</sup>. In the low porous, low otonic background, the development of relatively high pore hypertonic areas. Compaction and cementation should play a destructive role in reservoir properties, and dissolution should play a positive role in reservoir properties. Compaction adjusts the migration of clay minerals and miscellaneous bases in the original sediment in the study area, greatly reducing the porosity and permeability of the reservoir;the development of the cement cement, carbonate cementation and some quartz secondary compounds reduces the storage space;the dissolution effect, especially the secondary dissolution pores of the reservoir, which obviously improves the properties of the reservoir.展开更多
The present work has been accomplished to carry out a detailed study of the characteristics of the Early Jurassic Datta Formation of Trans-Indus Ranges, Pakistan. The discovery of Saib well-1 (Gas and condensate disco...The present work has been accomplished to carry out a detailed study of the characteristics of the Early Jurassic Datta Formation of Trans-Indus Ranges, Pakistan. The discovery of Saib well-1 (Gas and condensate discovery from Jurassic limestone) in the study basin takes an active interest in carrying out extensive exploration activities in the same basin. Jurassic rocks especially Datta Sandstone and Samana Suk Limestone are acting as good reservoirs. The study unit consists of variegated sandstone interbedded with siltstone, carbonaceous clay, and shale and coal stringer. For the current work, two stratigraphic sections (Pezu and Abbo Wanda) have been measured. To examine its sedimentology, depositional environment, diagenetic settings, and reservoir characteristics, a detailed study was conducted and various laboratory techniques have been utilized. About 95 rock samples from the bottom to the top of both sections were collected, and 50 rock samples have been selected for thin section analysis and were examined under a polarizing microscope to show their mineralogical composition, diagenesis, and their reservoir characteristics. XRD (X-ray diffraction), Cathodoluminescence (CL), SEM (Scanning electron microscope) with EDS (Energy-dispersive spectroscope), and Core plug porosity and permeability analysis have been used to interpret its chemical and mineralogical composition and its reservoir characteristics, respectively. Based on field observations and thin section analysis, four depositional facies and six lithofacies have been established. The sedimentary structures, depositional facies, and lithofacies indicate that Datta Formation was deposited in a deltaic environment. Compactions, cementation, fracturing and dissolution can greatly affect the quality of reservoir rock. Based on thin section and SEM analysis, large numbers of primary pores, fracture and secondary pores were observed and connectivity between the pores is good, and at some places, these pores were filled through the authigenic clay minerals like kaolinite, mixed layers illite/smectite and chlorite that influences the reservoir characteristics. Primary pores (thin section) and secondary pores (dissolution pores) and core plug porosity and permeability data (porosity 13.23%-26.89% and permeability 0.12 to 149 mD) shows that Datta Formation has a good reservoir quality.展开更多
Pore structure is the key element of tight sandstone reservoir, which restricts the accumulation and flow of oil and gas in the reservoir. At present, reservoir pore structure is the focus and difficulty of unconventi...Pore structure is the key element of tight sandstone reservoir, which restricts the accumulation and flow of oil and gas in the reservoir. At present, reservoir pore structure is the focus and difficulty of unconventional oil and gas exploration and development research. The tight sandstone reservoir in the Chang 4 + 5 member of the Upper Triassic Yanchang Formation is the main reservoir for oil and gas exploration in G area. At present, there is little research on its pore structure and fractal characteristics, which to some extent affects the progress of exploration and development. This paper selects the tight core samples of the Chang 4 + 5 member in the southern edge of the Ordos Basin, and based on the high-pressure mercury intrusion experiment, uses fractal theory to study the pore structure and fractal characteristics of the reservoir in the study area, thus providing theoretical basis for the evaluation and exploration and development of the Chang 4 + 5 tight reservoir in the G area. The research results show that the lithology of the Chang 4 + 5 tight sandstone reservoir in the southern edge of the Ordos Basin is mainly feldspathic sandstone, with the highest feldspar content, followed by quartz, and the clay mineral is mainly chlorite. The reservoir has poor physical properties and strong heterogeneity. There are three main fractal characteristics in Chang 4 + 5 reservoir in G area: the fractal curve of Type I reservoir sample is in two segments, the relatively large pore has certain fractal characteristics, the pore structure is relatively regular, and the heterogeneity is weak;Relatively small pores have no fractal characteristics and pore structure is irregular. The fractal curve of Type II reservoir samples shows a three-segment pattern, and each pore size range has certain fractal characteristics, and it gradually gets better with the increase of pore size. The fractal curve of Type III reservoir samples presents a similar one-segment pattern, and the fractal dimension exceeds the upper limit of 3. It is considered that the full pore size of this type of reservoir does not have fractal characteristics, the pore throat is completely irregular or the surface is rough, and the heterogeneity is very strong.展开更多
Based on the analysis of a large number of core samples, logging results, logging interpretation data and dynamic data in the study area, the characteristics of Chang 6 reservoir in Zhouguan area of Baihe area are stu...Based on the analysis of a large number of core samples, logging results, logging interpretation data and dynamic data in the study area, the characteristics of Chang 6 reservoir in Zhouguan area of Baihe area are studied, and the favorable reservoir areas in the study area are predicted. The results show that the lithology of Chang 6 reservoir is mainly light gray and gray fine-grained to very fine-grained feldspar lithic sandstone. The pore types are mainly residual intergranular pores and feldspar dissolved pores, including debris dissolved pores and microfractures. The porosity and permeability values are low, which belongs to low porosity-low permeability and ultra-low permeability reservoirs. According to the reservoir distribution characteristics and related data, the Chang 6 reservoir in the study area is divided into two types, mainly Class II and Class III reservoirs. The comprehensive evaluation predicts that the spatial distribution of the favorable area of Chang 6 reservoir is not uniform, but the distribution area is large, which has broad exploration and development value, and provides the necessary conditions for the distribution study of the favorable oil-bearing zone in this area and the preparation for the next exploration and development.展开更多
Based on an elaboration of the resource potential and annual production of tight sandstone gas and shale gas in the United States and China,this paper reviews the researches on the distribution of tight sandstone gas ...Based on an elaboration of the resource potential and annual production of tight sandstone gas and shale gas in the United States and China,this paper reviews the researches on the distribution of tight sandstone gas and shale gas reservoirs,and analyzes the distribution characteristics and genetic types of tight sandstone gas reservoirs.In the United States,the proportion of tight sandstone gas in the total gas production declined from 20%-35%in 2008 to about 8%in 2023,and the shale gas production was 8310×10^(8)m^(3)in 2023,about 80%of the total gas production,in contrast to the range of 5%-17%during 2000-2008.In China,the proportion of tight sandstone gas in the total gas production increased from 16%in 2010 to 28%or higher in 2023.China began to produce shale gas in 2012,with the production reaching 250×10^(8)m^(3)in 2023,about 11%of the total gas production of the country.The distribution of shale gas reservoirs is continuous.According to the fault presence,fault displacement and gas layer thickness,the continuous shale gas reservoirs can be divided into two types:continuity and intermittency.Most previous studies believed that both tight sandstone gas reservoirs and shale gas reservoirs are continuous,but this paper holds that the distribution of tight sandstone gas reservoirs is not continuous.According to the trap types,tight sandstone gas reservoirs can be divided into lithologic,anticlinal,and synclinal reservoirs.The tight sandstone gas is coal-derived in typical basins in China and Egypt,but oil-type gas in typical basins in the United States and Oman.展开更多
A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this ...A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this study,this study analyzed the applicability of resource evaluation methods,including the volumetric,genesis,and analogy methods,and estimated NGHs resource potential in the South China Sea by using scientific resource evaluation methods based on the factors controlling the geological accumulation and the reservoir characteristics of NGHs.Furthermore,this study compared the evaluation results of NGHs resource evaluations in representative worldwise sea areas via rational analysis.The results of this study are as follows:(1)The gas hydrate accumulation in the South China Sea is characterized by multiple sources of gas supply,multi-channel migration,and extensive accumulation,which are significantly different from those of oil and gas and other unconventional resources.(2)The evaluation of gas hydrate resources in the South China Sea is a highly targeted,stratified,and multidisciplinary evaluation of geological resources under the framework of a multi-type gas hydrate resource evaluation system and focuses on the comprehensive utilization of multi-source heterogeneous data.(3)Global NGHs resources is n×10^(15)m^(3),while the NGHs resources in the South China Sea are estimated to be 10^(13)m^(3),which is comparable to the abundance of typical marine NGHs deposits in other parts of the world.In the South China Sea,the NGHs resources have a broad prospect and provide a substantial resource base for production tests and industrialization of NGHs.展开更多
The northward subduction of the Neo-Tethys oceanic crust triggered multiple magmatic activities in the West Myanmar Arc,which in turn influenced the deposition of sedimentary pyroclastic rocks from the Cretaceous to E...The northward subduction of the Neo-Tethys oceanic crust triggered multiple magmatic activities in the West Myanmar Arc,which in turn influenced the deposition of sedimentary pyroclastic rocks from the Cretaceous to Eocene strata in the Central Myanmar Basin(CMB).The pore structure of these lithologic reservoirs is complex and rich in tuffaceous sandstone,which plays an adverse role in reservoir development in this region.To understand the development characteristics and genetic mechanism of the pyroclastic rocks within three sets of reservoirs in this area,a comprehensive analysis was conducted through borehole core observations,thin section identification,scanning electron microscope analysis,and mercury injection tests.The tuffaceous sandstone from the upper Cretaceous to the Eocene is dominated by intermediate-acid volcanic rock debris.The pyroclastic rocks exhibit evident chloritization and ironization,with residual intergranular pores being the principal type accompanied by a smaller amount of intergranular dissolved pores and intragranular dissolved pores.The highest porosity is observed in the Eocene tuffaceous sandstone,ranging from 8%to 12%.The Late Cretaceous to Paleocene sandstones exhibit lower porosity levels of only 4%-6%.These reservoirs are characterized by their low porosity and low-permeability.Despite the presence of a good source rock in this area,the volcanic debris particles filling the pores,as well as their subsequent devitrification,chloritization,and limonite mineralization,result in pore throat blockage and narrowing.The reservoirs in this area are small in size,exhibit poor reservoir connectivity and lateral continuity,and fail to meet the necessary conditions for commercial-scale hydrocarbon accumulation and migration.展开更多
Saline aquifers are the most popular waste and CO_(2)injection and storage reservoirs worldwide.This project proposes that several optimal injection positions should be investigated as hydraulic pressure-focused posit...Saline aquifers are the most popular waste and CO_(2)injection and storage reservoirs worldwide.This project proposes that several optimal injection positions should be investigated as hydraulic pressure-focused positions,in order to relieve the high demands of pump performance.The comprehensive indices(F_(i))representing the injectivity of different burial depths were obtained by using information entropy,based on the mercury injection experimental data of 13 rock samples.The results demonstrated that the burial depths of No.4,No.1 and No.2 in the Liujiagou Formation were the most suitable positions for hydraulic focused injection,which means the upper 30 m thickness could be regarded as the hydraulic focused range in the saline aquifer with an average thickness of 400 m.In addition,some laboratory experiments and in situ tests were carried out for the purpose of certifying and analyzing results,including SEM,XRD,brittleness index and logging.The results suggested that the rock samples at the No.4,No.1 and No.2 burial depth ranges have loose microstructure,weak cementation,as well as dual pores and fractures.The lithology is mainly quartz and feldspar,but the clay mineral content is high(10%-25%),which is positive for dissolution.The lithology is suitable for hydraulic fracturing to form extended cracks and micro-fissures during high-TDS(total dissolved solids)mine water injection,because of the high brittleness index.Finally,a theoretical and technical framework for high-TDS mine water injection was established,based on operating pilot engineering.Some theoretical defects and drawbacks learned from the field practices were summarized and solutions proposed.The research in this study could provide guidance and a paradigm for the inexpensive treatment of high-TDS mine water by injection and storage.展开更多
Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation.However,information is mislaid in the stacking process when tradit...Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation.However,information is mislaid in the stacking process when traditional texture attributes are extracted from poststack data,which is detrimental to complex reservoir description.In this study,pre-stack texture attributes are introduced,these attributes can not only capable of precisely depicting the lateral continuity of waveforms between different reflection points but also reflect amplitude versus offset,anisotropy,and heterogeneity in the medium.Due to its strong ability to represent stratigraphies,a pre-stack-data-based seismic facies analysis method is proposed using the selforganizing map algorithm.This method is tested on wide azimuth seismic data from China,and the advantages of pre-stack texture attributes in the description of stratum lateral changes are verified,in addition to the method's ability to reveal anisotropy and heterogeneity characteristics.The pre-stack texture classification results effectively distinguish different seismic reflection patterns,thereby providing reliable evidence for use in seismic facies analysis.展开更多
Lacustrine shale from the Qingshankou Formatin of Songliao basin and the Shahejie Formation of Bohai Bay basin, and marine shale from the lower Cambrian Jinmenchong Formation of Qiannan depression were analysed by usi...Lacustrine shale from the Qingshankou Formatin of Songliao basin and the Shahejie Formation of Bohai Bay basin, and marine shale from the lower Cambrian Jinmenchong Formation of Qiannan depression were analysed by using rock pyrolysis, TOC (total organic carbon), XRD (X-ray diffraction), SEM (scanning electron microscope), FE-SEM (field emission scanning electron microscope), high pressure mercury intrusion, and low pressure N2 and CO2 gas adsorption experiments, in aim to reveal their reservoir features. The results show that: (1) the width of micro-pores of all the studied samples mainly ranges from 0.45 to 0.7 nm indicated by CO2 isotherms, and the width of meso-pores is less than 10 nm, with type IV adsorption isotherms and type H2 hysteresis loop, indicative of "ink-bottle"-shaped pores. Good correlations exist among pore volume, surface area and averaged pore diameter, and a good positive correlation exists between micro-pore volume and TOC content; however, there is no obvious correlation between meso-pore volume and TOC content; (2) interparticle pores, pores among the edge of mineral grains and organic matter pores were all identified in marine and lacustrine shale, among which the interparticle pores may be influence by dissolution effect. Not all bitumen develops organic matter pore, and only high to over mature bitumen present pores. Now the description methods of micrometer scale pores developed in shale are very lack. Micro- fractures developed in Jiyang depression and dissolution interparticle pores developed in Songliao Basin should be the accumulation sites for shale oil in lacustrine shale, and can be as sweet spots.展开更多
The enrichment characteristics of deep shale gas in the Ordovician Wufeng-Silurian Longmaxi formations in the Sichuan Basin and its surrounding areas are investigated through experiments under high temperature and hig...The enrichment characteristics of deep shale gas in the Ordovician Wufeng-Silurian Longmaxi formations in the Sichuan Basin and its surrounding areas are investigated through experiments under high temperature and high pressure,including petrophysical properties analyses,triaxial stress test and isothermal adsorption of methane experiment.(1)The deep shale reservoirs drop significantly in porosity and permeability compared with shallower shale reservoirs,and contain mainly free gas.(2)With higher deviatoric stress and axial strain,the deep shale reservoirs have higher difficulty fracturing.(3)Affected by structural location and morphology,fracture characteristics,geofluid activity stages and intensity,deep shale gas reservoirs have more complicated preservation conditions.(4)To achieve the commercial development of deep shale gas reservoirs,deepening geological understanding is the basis,and exploring reservoir simulation technology befitting the geological features is the key.(5)The siliceous shale and limestone-bearing siliceous shale in the Metabolograptus persculptus-Parakidograptus acuminatus zones(LM1-LM3 graptolite zones)are the high-production intervals for deep shale gas and the most favorable landing targets for horizontal drilling.Deeps water areas such as Jiaoshiba,Wulong,Luzhou and Changning with deep shale reservoirs over 10 m thickness are the most favorable areas for deep shale gas enrichment.It is recommended to carry out exploration and development practice in deep-water shale gas areas deposited deep with burial depth no more than 5000 m where the geological structure is simple and the shale thickness in the LM1-LM3 graptolite zone is greater than 10 m.It is better to increase the lateral length of horizontal wells,and apply techniques including high intensity of perforations,large volume of proppant,far-field and near-wellbore diversions to maximize the stimulated deep reservoir volume.展开更多
Based on the drilling,cores,logs,seismic,laboratory analysis and so on,reservoir characteristics and hydrocarbon accumulation of Carboniferous volcanic weathered crust in Zhongguai high area are studied.Volcanic rocks...Based on the drilling,cores,logs,seismic,laboratory analysis and so on,reservoir characteristics and hydrocarbon accumulation of Carboniferous volcanic weathered crust in Zhongguai high area are studied.Volcanic rocks were formed in an island arc environment.The lithology is mainly andesite and tuff;Reservoir spaces are mainly secondary pore,fracture and their combination forms,fractures have a better effect on reservoir seepage;There are four layer structures of volcanic weathered crust,weathered clay layer,strongly weathered zone,weakly weathered zone and unweathered zone and strongly weathered zone is the best,which is the main reservoir development zone;The development of reservoir is mainly affected by weathering-leaching,lithology and lithofacies,and fault(fracture);Effective reservoirs could reach to 480 m thickness(high quality reservoirs are within 240 m).Carboniferous volcanic reservoirs are distributed along three zones,which are near the fault zone,high structural part,favorable lithofacies development zone,and one plane,which is near the unconformity.展开更多
Core and cast sections observation and description,and logging,scanning electron microscope and core lab analysis data etc. were applied to the present research of the characteristics and mechanism of low permeability...Core and cast sections observation and description,and logging,scanning electron microscope and core lab analysis data etc. were applied to the present research of the characteristics and mechanism of low permeability beach-bar sandstone reservoir of Es4 in Dongying sag. The results indicated the reservoir has the characteristics of middle-low pores,low-permeability,low compositional and structural maturity,and thin throat. The low-permeability is mainly due to sedimentation (fine particles and argillaceous inter beds) and diagenesis (compaction,cementation,and dissolution). The cementation reduced the physical property of the reservoir mainly by carbonate cementation,quartz autogeny and enragement,and autogeny clay. Clay minerals usually jam the pores by filling holes,close-fitting the wall of hole,bridging,wrapping grains,and separate attaching the pores and so on. The dissolution is insufficient so as not to improve the porosity and permeability of the reservoir obviously. So it is also an important factor of forming low-permeability reservoir.展开更多
Actual sandstone micromodel was used in this work to conduct the microscopic waterflooding experiment of ultra-low sandstone reservoir,since the inside seepage characteristics of microscopic waterflooding process of C...Actual sandstone micromodel was used in this work to conduct the microscopic waterflooding experiment of ultra-low sandstone reservoir,since the inside seepage characteristics of microscopic waterflooding process of Chang 8 ultra-low permeability sandstone reservoir of Upper Triassic Yanchang formation in Huaqing region of the Ordos Basin,China is difficult to observe directly.Combined with physical property,casting thin sections,constant-rate mercury injection capillary pressure and nuclear magnetic resonance,the influence of reservoir property on the waterflooding characteristics in pores were analyzed and evaluated.Seepage paths of waterflooding characteristics were divided into four types:homogeneous seepage,reticular-homogeneous seepage,finger-reticular seepage and finger-like seepage,the waterflooding efficiency of which decreases in turn.More than 70%of residual oil occurs as flowing-around seepage and oil film.Physical property,pore structure and movable fluid characteristics are all controlled by digenesis and their impacts on waterflooding efficiency are in accordance.Generally,the pore throat radius size and distribution and movable fluid percentage are closely related to waterflooding law.展开更多
Through graptolite identification in profiles,graptolite zone division,contour map compilation,and analysis of mineral composition,TOC content,lamina distribution features of shale samples,the biostratigraphic and res...Through graptolite identification in profiles,graptolite zone division,contour map compilation,and analysis of mineral composition,TOC content,lamina distribution features of shale samples,the biostratigraphic and reservoir characteristics of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its peripheral are sorted out.There are 4 graptolite zones(WF1 to WF4)in Wufeng Formation and 9(LM1 to LM9)in Longmaxi Formation,and the different graptolite zones can be calibrated by lithology and electrical property.The shale layers of these graptolite zones have two depocenters in the southwest and northeast,and differ in mineral composition,TOC,and lamina types.Among them,the graptolite zones of lower WF2 and WF4 are organic matter-poor massive hybrid shale,the upper part of WF1-WF2 and WF3 have horizontal bedding hybrid shale with organic matter,the LM1-LM4 mainly consist of organic-rich siliceous shale with horizontal bedding,and the LM5-LM9 graptolite zones consist of organic-lean hybrid shale with horizontal bedding.The mineral composition,TOC and lamina types of shale depend on the paleo-climate,paleo-water oxidation-reduction conditions,and paleo-sedimentation rate during its deposition.Deposited in oxygen-rich warm water,the lower parts of WF1 and WF2 graptolite zones have massive bedding,low TOC and silicon content.Deposited in cooler and oxygen-rich water,the WF4 has massive bedding,high calcium content and low TOC.Deposited in anoxic water with low rate,the upper part of WF2,WF3,and LM1-LM4 are composed of organic rich siliceous shale with horizontal bedding and high proportion of silt laminae.Deposited in oxygen rich water at a high rate,the graptolite zones LM5-LM9 have low contents of organic matter and siliceous content and high proportions of silt lamina.展开更多
基金Supported by the PetroChina Science and Technology Innovation Fund Project(2021DQ02-1003)Basic Research Project for Central Universities(2022JCCXDC02).
文摘Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.
基金funded by the National key R&D Program of China(No.2023YFE0120700)the National Natural Science Foundation of China(No.51934005)+2 种基金the Shaanxi Province 2023 Innovation Capability Support Plan(No.2023KJXX-122)the Technology Innovation Leading Program of Shaanxi(No.2022 PT-08)the Project of Youth Innovation Team of Shaanxi Universities(No.22JP063).
文摘The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.
基金supported by the project of the China Geological Survey for shale gas in Southern China(DD20221852)the National Natural Science Foundation of China(42242010,U2244208)。
文摘China is home to shales of three facies:Marine shale,continental shale,and marine-continental transitional shale.Different types of shale gas are associated with significantly different formation conditions and major controlling factors.This study compared the geological characteristics of various shales and analyzed the influences of different parameters on the formation and accumulation of shale gas.In general,shales in China’s several regions exhibit high total organic carbon(TOC)contents,which lays a sound material basis for shale gas generation.Marine strata generally show high degrees of thermal evolution.In contrast,continental shales manifest low degrees of thermal evolution,necessitating focusing on areas with relatively high degrees of thermal evolution in the process of shale gas surveys for these shales.The shales of the Wufeng and Silurian formations constitute the most favorable shale gas reservoirs since they exhibit the highest porosity among the three types of shales.These shales are followed by those in the Niutitang and Longtan formations.In contrast,the shales of the Doushantuo,Yanchang,and Qingshankou formations manifest low porosities.Furthermore,the shales of the Wufeng and Longmaxi formations exhibit high brittle mineral contents.Despite a low siliceous mineral content,the shales of the Doushantuo Formation feature a high carbonate mineral content,which can increase the shales’brittleness to some extent.For marine-continental transitional shales,where thin interbeds of tight sandstone with unequal thicknesses are generally found,it is recommended that fracturing combined with drainage of multiple sets of lithologic strata should be employed to enhance their shale gas production.
基金Supported by the Basic Science Research Fund Project of PetroChina Affiliated Institute(2020D-5008-06)。
文摘Taking the Paleogene Shahejie Formation in Nanpu sag of Bohai Bay Basin as an example,this study comprehensively utilizes seismic,mud logging,well logging,physical property analysis and core thin section data to investigate the metamorphic reservoir formed by contact metamorphism after igneous rock intrusion.(1)A geological model of the igneous intrusion contact met amorphic system is proposed,which can be divided into five structural layers vertically:the intrusion,upper metamorphic aureole,lower metamorphic aureole,normal sedimentary layers on the roof and floor.(2)The intrusion is characterized by xenoliths indicating intrusive facies at the top,regular changes in rock texture and mineral crystallization from the center to the edge on a microscopic scale,and low-angle oblique penetrations of the intrusion through sedimentary strata on a macroscopic scale.The metamorphic aureole has characteristics such as sedimentary rocks as the host rock,typical palimpsest textures developed,various low-temperature thermal metamorphic minerals developed,and medium-low grade thermal metamorphic rocks as the lithology.(3)The reservoir in contact metamorphic aureole has two types of reservoir spaces:matrix pores and fractures.The matrix pores are secondary"intergranular pores"distributed around metamorphic minerals after thermal metamorphic transformation in metasandstones.The fractures are mainly structural fractures and intrusive compressive fractures in metamudstones.The reservoirs generally have three spatial distribution characteristics:layered,porphyritic and hydrocarbon impregnation along fracture.(4)The distribution of reservoirs in the metamorphic aureole is mainly controlled by the intensity of thermal baking.Furthermore,the distribution of favorable reservoirs is controlled by the coupling of favorable lithofacies and thermal contact metamorphism,intrusive compression and hydrothermal dissolution.The proposal and application of the geological model of the intrusion contact metamorphic system are expected to promote the discovery of exploration targets of contact metamorphic rock in Nanpu sag,and provide a reference for the study and exploration of deep contact metamorphic rock reservoirs in the Bohai Bay Basin.
文摘In order to clarify the reservoir characteristics and main controlling factors of the flow three section of the K oil field in the Weixinan Depression, a study on the reservoir characteristics and main controlling factors of the flow three section of the K oil field in the Weixinan Depression has been carried out by utilizing the data of cores, casting thin sections, physical property tests and logging wells. The results show that the lithology of the reservoir in the flow three section of the study area is dominated by coarse sandstone and medium sandstone, followed by conglomerate-bearing sandstone and sand conglomerate. The porosity is mainly distributed in the range of medium-high porosity, and the permeability is mainly medium seepage, and the overall physical properties are good. The three sections of the stream in the study area mainly include four sedimentary microphases, namely, underwater diversion channel, estuarine dam, mat sand and inter-diversion bay. The underwater diversion channel has the best physical properties, characterized by coarse grains and low mud content. The medium and coarse sand content of various lithologic reservoirs is the main factor in the formation of high-quality reservoirs. Rock-forming action is an important factor affecting the physical properties of local reservoirs, comparing the compaction, cementation and dissolution between different sedimentary microphases, the underwater diverging river has the lowest rate of compaction and pore reduction, the highest rate of pore increase by dissolution, and the best physical properties. Therefore, the weakly cemented-strongly dissolved coarse sandstone phase developed in the microphase of the underwater diversion channel in section 3 of the flow in the study area is the most favorable reservoir.
文摘Based on the sheet, scanning electron microscope and high pressure mercury analysis method, this paper takes Jiyuan oilfield-Ma Jia mountain district 4 5 sandstone reservoir as the research object, from the reservoir petrology, pore type and porosity, permeability, the system analyzed the reservoir characteristics and its control factors. The results show that the sandstone in the 4 5 section of Baoziwan-Majiashan area of Jiyuan oilfield is fine in size and high in filling content. The pore types were dominated by intergranular pores and dissolved pores, with a low face rate. The reservoir property is relatively poor, with mean porosity of 11.11% and mean permeability of 1.16 × 10<sup>−</sup><sup>3</sup> µm<sup>2</sup>. In the low porous, low otonic background, the development of relatively high pore hypertonic areas. Compaction and cementation should play a destructive role in reservoir properties, and dissolution should play a positive role in reservoir properties. Compaction adjusts the migration of clay minerals and miscellaneous bases in the original sediment in the study area, greatly reducing the porosity and permeability of the reservoir;the development of the cement cement, carbonate cementation and some quartz secondary compounds reduces the storage space;the dissolution effect, especially the secondary dissolution pores of the reservoir, which obviously improves the properties of the reservoir.
文摘The present work has been accomplished to carry out a detailed study of the characteristics of the Early Jurassic Datta Formation of Trans-Indus Ranges, Pakistan. The discovery of Saib well-1 (Gas and condensate discovery from Jurassic limestone) in the study basin takes an active interest in carrying out extensive exploration activities in the same basin. Jurassic rocks especially Datta Sandstone and Samana Suk Limestone are acting as good reservoirs. The study unit consists of variegated sandstone interbedded with siltstone, carbonaceous clay, and shale and coal stringer. For the current work, two stratigraphic sections (Pezu and Abbo Wanda) have been measured. To examine its sedimentology, depositional environment, diagenetic settings, and reservoir characteristics, a detailed study was conducted and various laboratory techniques have been utilized. About 95 rock samples from the bottom to the top of both sections were collected, and 50 rock samples have been selected for thin section analysis and were examined under a polarizing microscope to show their mineralogical composition, diagenesis, and their reservoir characteristics. XRD (X-ray diffraction), Cathodoluminescence (CL), SEM (Scanning electron microscope) with EDS (Energy-dispersive spectroscope), and Core plug porosity and permeability analysis have been used to interpret its chemical and mineralogical composition and its reservoir characteristics, respectively. Based on field observations and thin section analysis, four depositional facies and six lithofacies have been established. The sedimentary structures, depositional facies, and lithofacies indicate that Datta Formation was deposited in a deltaic environment. Compactions, cementation, fracturing and dissolution can greatly affect the quality of reservoir rock. Based on thin section and SEM analysis, large numbers of primary pores, fracture and secondary pores were observed and connectivity between the pores is good, and at some places, these pores were filled through the authigenic clay minerals like kaolinite, mixed layers illite/smectite and chlorite that influences the reservoir characteristics. Primary pores (thin section) and secondary pores (dissolution pores) and core plug porosity and permeability data (porosity 13.23%-26.89% and permeability 0.12 to 149 mD) shows that Datta Formation has a good reservoir quality.
文摘Pore structure is the key element of tight sandstone reservoir, which restricts the accumulation and flow of oil and gas in the reservoir. At present, reservoir pore structure is the focus and difficulty of unconventional oil and gas exploration and development research. The tight sandstone reservoir in the Chang 4 + 5 member of the Upper Triassic Yanchang Formation is the main reservoir for oil and gas exploration in G area. At present, there is little research on its pore structure and fractal characteristics, which to some extent affects the progress of exploration and development. This paper selects the tight core samples of the Chang 4 + 5 member in the southern edge of the Ordos Basin, and based on the high-pressure mercury intrusion experiment, uses fractal theory to study the pore structure and fractal characteristics of the reservoir in the study area, thus providing theoretical basis for the evaluation and exploration and development of the Chang 4 + 5 tight reservoir in the G area. The research results show that the lithology of the Chang 4 + 5 tight sandstone reservoir in the southern edge of the Ordos Basin is mainly feldspathic sandstone, with the highest feldspar content, followed by quartz, and the clay mineral is mainly chlorite. The reservoir has poor physical properties and strong heterogeneity. There are three main fractal characteristics in Chang 4 + 5 reservoir in G area: the fractal curve of Type I reservoir sample is in two segments, the relatively large pore has certain fractal characteristics, the pore structure is relatively regular, and the heterogeneity is weak;Relatively small pores have no fractal characteristics and pore structure is irregular. The fractal curve of Type II reservoir samples shows a three-segment pattern, and each pore size range has certain fractal characteristics, and it gradually gets better with the increase of pore size. The fractal curve of Type III reservoir samples presents a similar one-segment pattern, and the fractal dimension exceeds the upper limit of 3. It is considered that the full pore size of this type of reservoir does not have fractal characteristics, the pore throat is completely irregular or the surface is rough, and the heterogeneity is very strong.
文摘Based on the analysis of a large number of core samples, logging results, logging interpretation data and dynamic data in the study area, the characteristics of Chang 6 reservoir in Zhouguan area of Baihe area are studied, and the favorable reservoir areas in the study area are predicted. The results show that the lithology of Chang 6 reservoir is mainly light gray and gray fine-grained to very fine-grained feldspar lithic sandstone. The pore types are mainly residual intergranular pores and feldspar dissolved pores, including debris dissolved pores and microfractures. The porosity and permeability values are low, which belongs to low porosity-low permeability and ultra-low permeability reservoirs. According to the reservoir distribution characteristics and related data, the Chang 6 reservoir in the study area is divided into two types, mainly Class II and Class III reservoirs. The comprehensive evaluation predicts that the spatial distribution of the favorable area of Chang 6 reservoir is not uniform, but the distribution area is large, which has broad exploration and development value, and provides the necessary conditions for the distribution study of the favorable oil-bearing zone in this area and the preparation for the next exploration and development.
基金Supported by the National Key R&D Project(2019YFC1805505)National Natural Science Foundation of China(42272188,42172149,U2244209)+2 种基金Science and Technology Special Project of China National Petroleum Corporation(2023YQX10101)Petrochemical Joint Fund Integration Project of National Natural Science Foundation of China(U20B6001)Shale Gas Academician Workstation Project of Guizhou Energy Industry Research Institute Co.,Ltd.([2021]45-2)。
文摘Based on an elaboration of the resource potential and annual production of tight sandstone gas and shale gas in the United States and China,this paper reviews the researches on the distribution of tight sandstone gas and shale gas reservoirs,and analyzes the distribution characteristics and genetic types of tight sandstone gas reservoirs.In the United States,the proportion of tight sandstone gas in the total gas production declined from 20%-35%in 2008 to about 8%in 2023,and the shale gas production was 8310×10^(8)m^(3)in 2023,about 80%of the total gas production,in contrast to the range of 5%-17%during 2000-2008.In China,the proportion of tight sandstone gas in the total gas production increased from 16%in 2010 to 28%or higher in 2023.China began to produce shale gas in 2012,with the production reaching 250×10^(8)m^(3)in 2023,about 11%of the total gas production of the country.The distribution of shale gas reservoirs is continuous.According to the fault presence,fault displacement and gas layer thickness,the continuous shale gas reservoirs can be divided into two types:continuity and intermittency.Most previous studies believed that both tight sandstone gas reservoirs and shale gas reservoirs are continuous,but this paper holds that the distribution of tight sandstone gas reservoirs is not continuous.According to the trap types,tight sandstone gas reservoirs can be divided into lithologic,anticlinal,and synclinal reservoirs.The tight sandstone gas is coal-derived in typical basins in China and Egypt,but oil-type gas in typical basins in the United States and Oman.
基金jointly supported by the National Natural Science Foundation of China(42376222,U22A20581,and 42076069)Key Research and Development Program of Hainan Province(ZDYF2024GXJS002)China Geological Survey(DD20230402)。
文摘A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this study,this study analyzed the applicability of resource evaluation methods,including the volumetric,genesis,and analogy methods,and estimated NGHs resource potential in the South China Sea by using scientific resource evaluation methods based on the factors controlling the geological accumulation and the reservoir characteristics of NGHs.Furthermore,this study compared the evaluation results of NGHs resource evaluations in representative worldwise sea areas via rational analysis.The results of this study are as follows:(1)The gas hydrate accumulation in the South China Sea is characterized by multiple sources of gas supply,multi-channel migration,and extensive accumulation,which are significantly different from those of oil and gas and other unconventional resources.(2)The evaluation of gas hydrate resources in the South China Sea is a highly targeted,stratified,and multidisciplinary evaluation of geological resources under the framework of a multi-type gas hydrate resource evaluation system and focuses on the comprehensive utilization of multi-source heterogeneous data.(3)Global NGHs resources is n×10^(15)m^(3),while the NGHs resources in the South China Sea are estimated to be 10^(13)m^(3),which is comparable to the abundance of typical marine NGHs deposits in other parts of the world.In the South China Sea,the NGHs resources have a broad prospect and provide a substantial resource base for production tests and industrialization of NGHs.
基金Supported by the National Natural Science Foundation of China(No.92055203)。
文摘The northward subduction of the Neo-Tethys oceanic crust triggered multiple magmatic activities in the West Myanmar Arc,which in turn influenced the deposition of sedimentary pyroclastic rocks from the Cretaceous to Eocene strata in the Central Myanmar Basin(CMB).The pore structure of these lithologic reservoirs is complex and rich in tuffaceous sandstone,which plays an adverse role in reservoir development in this region.To understand the development characteristics and genetic mechanism of the pyroclastic rocks within three sets of reservoirs in this area,a comprehensive analysis was conducted through borehole core observations,thin section identification,scanning electron microscope analysis,and mercury injection tests.The tuffaceous sandstone from the upper Cretaceous to the Eocene is dominated by intermediate-acid volcanic rock debris.The pyroclastic rocks exhibit evident chloritization and ironization,with residual intergranular pores being the principal type accompanied by a smaller amount of intergranular dissolved pores and intragranular dissolved pores.The highest porosity is observed in the Eocene tuffaceous sandstone,ranging from 8%to 12%.The Late Cretaceous to Paleocene sandstones exhibit lower porosity levels of only 4%-6%.These reservoirs are characterized by their low porosity and low-permeability.Despite the presence of a good source rock in this area,the volcanic debris particles filling the pores,as well as their subsequent devitrification,chloritization,and limonite mineralization,result in pore throat blockage and narrowing.The reservoirs in this area are small in size,exhibit poor reservoir connectivity and lateral continuity,and fail to meet the necessary conditions for commercial-scale hydrocarbon accumulation and migration.
基金supported by the National Key Research and Development Program of China(No.2023YFC3012103 and No.2019YFC1805400)the National Science Foundation of Jiangsu Province,China(No.BK20210524)+1 种基金the National Natural Science Foundation of China(No.42202268 and No.42172272)the Fundamental Research Funds for the Central Universities,China(No.2020ZDPY0201)。
文摘Saline aquifers are the most popular waste and CO_(2)injection and storage reservoirs worldwide.This project proposes that several optimal injection positions should be investigated as hydraulic pressure-focused positions,in order to relieve the high demands of pump performance.The comprehensive indices(F_(i))representing the injectivity of different burial depths were obtained by using information entropy,based on the mercury injection experimental data of 13 rock samples.The results demonstrated that the burial depths of No.4,No.1 and No.2 in the Liujiagou Formation were the most suitable positions for hydraulic focused injection,which means the upper 30 m thickness could be regarded as the hydraulic focused range in the saline aquifer with an average thickness of 400 m.In addition,some laboratory experiments and in situ tests were carried out for the purpose of certifying and analyzing results,including SEM,XRD,brittleness index and logging.The results suggested that the rock samples at the No.4,No.1 and No.2 burial depth ranges have loose microstructure,weak cementation,as well as dual pores and fractures.The lithology is mainly quartz and feldspar,but the clay mineral content is high(10%-25%),which is positive for dissolution.The lithology is suitable for hydraulic fracturing to form extended cracks and micro-fissures during high-TDS(total dissolved solids)mine water injection,because of the high brittleness index.Finally,a theoretical and technical framework for high-TDS mine water injection was established,based on operating pilot engineering.Some theoretical defects and drawbacks learned from the field practices were summarized and solutions proposed.The research in this study could provide guidance and a paradigm for the inexpensive treatment of high-TDS mine water by injection and storage.
基金supported by the Scientific Research Staring Foundation of University of Electronic Science and Technology of China(No.ZYGX2015KYQD049)
文摘Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation.However,information is mislaid in the stacking process when traditional texture attributes are extracted from poststack data,which is detrimental to complex reservoir description.In this study,pre-stack texture attributes are introduced,these attributes can not only capable of precisely depicting the lateral continuity of waveforms between different reflection points but also reflect amplitude versus offset,anisotropy,and heterogeneity in the medium.Due to its strong ability to represent stratigraphies,a pre-stack-data-based seismic facies analysis method is proposed using the selforganizing map algorithm.This method is tested on wide azimuth seismic data from China,and the advantages of pre-stack texture attributes in the description of stratum lateral changes are verified,in addition to the method's ability to reveal anisotropy and heterogeneity characteristics.The pre-stack texture classification results effectively distinguish different seismic reflection patterns,thereby providing reliable evidence for use in seismic facies analysis.
基金jointly supported by grants from the Natural Science Foundation of China(grants No.41402110 and 41330313)“Fundamental Research Funds for the Central Universities”(grants No.14CX05017A and 13CX05013A)
文摘Lacustrine shale from the Qingshankou Formatin of Songliao basin and the Shahejie Formation of Bohai Bay basin, and marine shale from the lower Cambrian Jinmenchong Formation of Qiannan depression were analysed by using rock pyrolysis, TOC (total organic carbon), XRD (X-ray diffraction), SEM (scanning electron microscope), FE-SEM (field emission scanning electron microscope), high pressure mercury intrusion, and low pressure N2 and CO2 gas adsorption experiments, in aim to reveal their reservoir features. The results show that: (1) the width of micro-pores of all the studied samples mainly ranges from 0.45 to 0.7 nm indicated by CO2 isotherms, and the width of meso-pores is less than 10 nm, with type IV adsorption isotherms and type H2 hysteresis loop, indicative of "ink-bottle"-shaped pores. Good correlations exist among pore volume, surface area and averaged pore diameter, and a good positive correlation exists between micro-pore volume and TOC content; however, there is no obvious correlation between meso-pore volume and TOC content; (2) interparticle pores, pores among the edge of mineral grains and organic matter pores were all identified in marine and lacustrine shale, among which the interparticle pores may be influence by dissolution effect. Not all bitumen develops organic matter pore, and only high to over mature bitumen present pores. Now the description methods of micrometer scale pores developed in shale are very lack. Micro- fractures developed in Jiyang depression and dissolution interparticle pores developed in Songliao Basin should be the accumulation sites for shale oil in lacustrine shale, and can be as sweet spots.
基金Supported by the National Natural Science Foundation of China(41872124,42130803)Sinopec Key Scientific and Technological Project(P20046)。
文摘The enrichment characteristics of deep shale gas in the Ordovician Wufeng-Silurian Longmaxi formations in the Sichuan Basin and its surrounding areas are investigated through experiments under high temperature and high pressure,including petrophysical properties analyses,triaxial stress test and isothermal adsorption of methane experiment.(1)The deep shale reservoirs drop significantly in porosity and permeability compared with shallower shale reservoirs,and contain mainly free gas.(2)With higher deviatoric stress and axial strain,the deep shale reservoirs have higher difficulty fracturing.(3)Affected by structural location and morphology,fracture characteristics,geofluid activity stages and intensity,deep shale gas reservoirs have more complicated preservation conditions.(4)To achieve the commercial development of deep shale gas reservoirs,deepening geological understanding is the basis,and exploring reservoir simulation technology befitting the geological features is the key.(5)The siliceous shale and limestone-bearing siliceous shale in the Metabolograptus persculptus-Parakidograptus acuminatus zones(LM1-LM3 graptolite zones)are the high-production intervals for deep shale gas and the most favorable landing targets for horizontal drilling.Deeps water areas such as Jiaoshiba,Wulong,Luzhou and Changning with deep shale reservoirs over 10 m thickness are the most favorable areas for deep shale gas enrichment.It is recommended to carry out exploration and development practice in deep-water shale gas areas deposited deep with burial depth no more than 5000 m where the geological structure is simple and the shale thickness in the LM1-LM3 graptolite zone is greater than 10 m.It is better to increase the lateral length of horizontal wells,and apply techniques including high intensity of perforations,large volume of proppant,far-field and near-wellbore diversions to maximize the stimulated deep reservoir volume.
基金Project (51674211) supported by the National Natural Science Foundation of ChinaProject (51534006) supported by the Key Projects of the Natural Science Foundation,ChinaProject (2017ZX05036003-003) supported by the National Science and Technology Project of China
文摘Based on the drilling,cores,logs,seismic,laboratory analysis and so on,reservoir characteristics and hydrocarbon accumulation of Carboniferous volcanic weathered crust in Zhongguai high area are studied.Volcanic rocks were formed in an island arc environment.The lithology is mainly andesite and tuff;Reservoir spaces are mainly secondary pore,fracture and their combination forms,fractures have a better effect on reservoir seepage;There are four layer structures of volcanic weathered crust,weathered clay layer,strongly weathered zone,weakly weathered zone and unweathered zone and strongly weathered zone is the best,which is the main reservoir development zone;The development of reservoir is mainly affected by weathering-leaching,lithology and lithofacies,and fault(fracture);Effective reservoirs could reach to 480 m thickness(high quality reservoirs are within 240 m).Carboniferous volcanic reservoirs are distributed along three zones,which are near the fault zone,high structural part,favorable lithofacies development zone,and one plane,which is near the unconformity.
基金Project P06012 supported by the Key Research Project of SINOPEC
文摘Core and cast sections observation and description,and logging,scanning electron microscope and core lab analysis data etc. were applied to the present research of the characteristics and mechanism of low permeability beach-bar sandstone reservoir of Es4 in Dongying sag. The results indicated the reservoir has the characteristics of middle-low pores,low-permeability,low compositional and structural maturity,and thin throat. The low-permeability is mainly due to sedimentation (fine particles and argillaceous inter beds) and diagenesis (compaction,cementation,and dissolution). The cementation reduced the physical property of the reservoir mainly by carbonate cementation,quartz autogeny and enragement,and autogeny clay. Clay minerals usually jam the pores by filling holes,close-fitting the wall of hole,bridging,wrapping grains,and separate attaching the pores and so on. The dissolution is insufficient so as not to improve the porosity and permeability of the reservoir obviously. So it is also an important factor of forming low-permeability reservoir.
基金Project(2015KTCL01-09)supported by the Innovation Project of Science and Technology of Shaanxi Province,ChinaProject(2015M582699)supported by the China Postdoctoral Science Foundation+1 种基金Project(2016JQ4022)supported by the Natural Science Foundation Research Project of Shaanxi Province,ChinaProject(41702146)supported by the National Natural Science Foundation of China
文摘Actual sandstone micromodel was used in this work to conduct the microscopic waterflooding experiment of ultra-low sandstone reservoir,since the inside seepage characteristics of microscopic waterflooding process of Chang 8 ultra-low permeability sandstone reservoir of Upper Triassic Yanchang formation in Huaqing region of the Ordos Basin,China is difficult to observe directly.Combined with physical property,casting thin sections,constant-rate mercury injection capillary pressure and nuclear magnetic resonance,the influence of reservoir property on the waterflooding characteristics in pores were analyzed and evaluated.Seepage paths of waterflooding characteristics were divided into four types:homogeneous seepage,reticular-homogeneous seepage,finger-reticular seepage and finger-like seepage,the waterflooding efficiency of which decreases in turn.More than 70%of residual oil occurs as flowing-around seepage and oil film.Physical property,pore structure and movable fluid characteristics are all controlled by digenesis and their impacts on waterflooding efficiency are in accordance.Generally,the pore throat radius size and distribution and movable fluid percentage are closely related to waterflooding law.
基金Supported by the China National Science and Technology Major Project(2017ZX05035-001)。
文摘Through graptolite identification in profiles,graptolite zone division,contour map compilation,and analysis of mineral composition,TOC content,lamina distribution features of shale samples,the biostratigraphic and reservoir characteristics of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its peripheral are sorted out.There are 4 graptolite zones(WF1 to WF4)in Wufeng Formation and 9(LM1 to LM9)in Longmaxi Formation,and the different graptolite zones can be calibrated by lithology and electrical property.The shale layers of these graptolite zones have two depocenters in the southwest and northeast,and differ in mineral composition,TOC,and lamina types.Among them,the graptolite zones of lower WF2 and WF4 are organic matter-poor massive hybrid shale,the upper part of WF1-WF2 and WF3 have horizontal bedding hybrid shale with organic matter,the LM1-LM4 mainly consist of organic-rich siliceous shale with horizontal bedding,and the LM5-LM9 graptolite zones consist of organic-lean hybrid shale with horizontal bedding.The mineral composition,TOC and lamina types of shale depend on the paleo-climate,paleo-water oxidation-reduction conditions,and paleo-sedimentation rate during its deposition.Deposited in oxygen-rich warm water,the lower parts of WF1 and WF2 graptolite zones have massive bedding,low TOC and silicon content.Deposited in cooler and oxygen-rich water,the WF4 has massive bedding,high calcium content and low TOC.Deposited in anoxic water with low rate,the upper part of WF2,WF3,and LM1-LM4 are composed of organic rich siliceous shale with horizontal bedding and high proportion of silt laminae.Deposited in oxygen rich water at a high rate,the graptolite zones LM5-LM9 have low contents of organic matter and siliceous content and high proportions of silt lamina.