期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Spatial and temporal patterns of the sensitivity of radial growth response by Picea schrenkiana to regional climate change in the Tianshan Mountains 被引量:3
1
作者 Zhongtong Peng Yuandong Zhang +6 位作者 Liangjun Zhu Mingming Guo Qingao Lu Kun Xu Hui Shao Qifeng Mo Shirong Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第6期1669-1681,共13页
Climate change significantly impacts forest ecosystems in arid and semi-arid regions.However,spatiotemporal patterns of climate-sensitive changes in individual tree growth under increased climate warming and precipita... Climate change significantly impacts forest ecosystems in arid and semi-arid regions.However,spatiotemporal patterns of climate-sensitive changes in individual tree growth under increased climate warming and precipitation in north-west China is unclear.The dendrochronological method was used to study climate response sensitivity of radial growth of Picea schrenkiana from 158 trees at six sites during 1990-2020.The results show that climate warming and increased precipitation significantly promoted the growth of trees.The response to temperature first increased,then decreased.However,the response to increased precipitation and the self-calibrating Palmer Drought Severity Index(scPDSI)increased significantly.In most areas of the Tianshan Mountains,the proportion of trees under increased precipitation and scPDSI positive response was relatively high.Over time,small-diameter trees were strongly affected by drought stress.It is predicted that under continuous warming and increased precipitation,trees in most areas of the Tianshan Mountains,especially those with small diameters,will be more affected by precipitation. 展开更多
关键词 Regional climate change Picea schrenkiana Climate response sensitivity Spatiotemporal patterns Tianshan mountains
下载PDF
Introducing the nth-Order Features Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (nth-FASAM-N): II. Illustrative Example
2
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2024年第1期43-95,共54页
This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by con... This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by considering the well-known Nordheim-Fuchs reactor dynamics/safety model. This model describes a short-time self-limiting power excursion in a nuclear reactor system having a negative temperature coefficient in which a large amount of reactivity is suddenly inserted, either intentionally or by accident. This nonlinear paradigm model is sufficiently complex to model realistically self-limiting power excursions for short times yet admits closed-form exact expressions for the time-dependent neutron flux, temperature distribution and energy released during the transient power burst. The n<sup>th</sup>-FASAM-N methodology is compared to the extant “n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-CASAM-N) showing that: (i) the 1<sup>st</sup>-FASAM-N and the 1<sup>st</sup>-CASAM-N methodologies are equally efficient for computing the first-order sensitivities;each methodology requires a single large-scale computation for solving the “First-Level Adjoint Sensitivity System” (1<sup>st</sup>-LASS);(ii) the 2<sup>nd</sup>-FASAM-N methodology is considerably more efficient than the 2<sup>nd</sup>-CASAM-N methodology for computing the second-order sensitivities since the number of feature-functions is much smaller than the number of primary parameters;specifically for the Nordheim-Fuchs model, the 2<sup>nd</sup>-FASAM-N methodology requires 2 large-scale computations to obtain all of the exact expressions of the 28 distinct second-order response sensitivities with respect to the model parameters while the 2<sup>nd</sup>-CASAM-N methodology requires 7 large-scale computations for obtaining these 28 second-order sensitivities;(iii) the 3<sup>rd</sup>-FASAM-N methodology is even more efficient than the 3<sup>rd</sup>-CASAM-N methodology: only 2 large-scale computations are needed to obtain the exact expressions of the 84 distinct third-order response sensitivities with respect to the Nordheim-Fuchs model’s parameters when applying the 3<sup>rd</sup>-FASAM-N methodology, while the application of the 3<sup>rd</sup>-CASAM-N methodology requires at least 22 large-scale computations for computing the same 84 distinct third-order sensitivities. Together, the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are the most practical methodologies for computing response sensitivities of any order comprehensively and accurately, overcoming the curse of dimensionality in sensitivity analysis. 展开更多
关键词 Nordheim-Fuchs Reactor Safety Model Feature Functions of Model Parameters High-Order response Sensitivities to Parameters Adjoint sensitivity Systems
下载PDF
Illustrative Application of the 2<sup>nd</sup>-Order Adjoint Sensitivity Analysis Methodology to a Paradigm Linear Evolution/Transmission Model: Point-Detector Response 被引量:2
3
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2020年第3期355-381,共27页
This work illustrates the application of the “Second Order Comprehensive Adjoint Sensitivity Analysis Methodology” (2<sup>nd</sup>-CASAM) to a mathematical model that can simulate the evolution and/or tr... This work illustrates the application of the “Second Order Comprehensive Adjoint Sensitivity Analysis Methodology” (2<sup>nd</sup>-CASAM) to a mathematical model that can simulate the evolution and/or transmission of particles in a heterogeneous medium. The model response is the value of the model’s state function (particle concentration or particle flux) at a point in phase-space, which would simulate a pointwise measurement of the respective state function. This paradigm model admits exact closed-form expressions for all of the 1<sup>st</sup>- and 2<sup>nd</sup>-order response sensitivities to the model’s uncertain parameters and domain boundaries. These closed-form expressions can be used to verify the numerical results of production and/or commercial software, e.g., particle transport codes. Furthermore, this paradigm model comprises many uncertain parameters which have relative sensitivities of identical magnitudes. Therefore, this paradigm model could serve as a stringent benchmark for inter-comparing the performances of all deterministic and statistical sensitivity analysis methods, including the 2<sup>nd</sup>-CASAM. 展开更多
关键词 Second-Order Adjoint Comprehensive sensitivity Analysis Methodology (2nd-CASAM) Evolution Benchmark Model Exact and Efficient Computation of First- and Second-Order response Sensitivities
下载PDF
Illustrative Application of the 2<sup>nd</sup>-Order Adjoint Sensitivity Analysis Methodology to a Paradigm Linear Evolution/Transmission Model: Reaction-Rate Detector Response 被引量:2
4
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2020年第3期382-397,共16页
This work continues the illustrative application of the “Second Order Comprehensive Adjoint Sensitivity Analysis Methodology” (2<sup>nd</sup>-CASAM) to a benchmark mathematical model that can simulate th... This work continues the illustrative application of the “Second Order Comprehensive Adjoint Sensitivity Analysis Methodology” (2<sup>nd</sup>-CASAM) to a benchmark mathematical model that can simulate the evolution and/or transmission of particles in a heterogeneous medium. The model response considered in this work is a reaction-rate detector response, which provides the average interactions of particles with the respective detector or, alternatively, the time-average of the concentration of a mixture of substances in a medium. The definition of this model response includes both uncertain boundary points of the benchmark, thereby providing both direct and indirect contributions to the response sensitivities stemming from the boundaries. The exact expressions for the 1<sup>st</sup>- and 2<sup>nd</sup>-order response sensitivities to the boundary and model parameters obtained in this work can serve as stringent benchmarks for inter-comparing the performances of all (deterministic and statistical) sensitivity analysis methods. 展开更多
关键词 Second-Order Adjoint Comprehensive sensitivity Analysis Methodology (2nd-CASAM) Evolution Benchmark Model Exact and Efficient Computation of First- and Second-Order response Sensitivities
下载PDF
The First-Order Comprehensive Sensitivity Analysis Methodology (1st-CASAM) for Scalar-Valued Responses: I. Theory 被引量:1
5
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2020年第2期275-289,共15页
This work presents the first-order comprehensive adjoint sensitivity analysis methodology (1st-CASAM) for computing efficiently, exactly, and exhaustively, the first-order sensitivities of scalar-valued responses (res... This work presents the first-order comprehensive adjoint sensitivity analysis methodology (1st-CASAM) for computing efficiently, exactly, and exhaustively, the first-order sensitivities of scalar-valued responses (results of interest) of coupled nonlinear physical systems characterized by imprecisely known model parameters, boundaries and interfaces between the coupled systems. The 1st-CASAM highlights the conclusion that response sensitivities to the imprecisely known domain boundaries and interfaces can arise both from the definition of the system’s response as well as from the equations, interfaces and boundary conditions defining the model and its imprecisely known domain. By enabling, in premiere, the exact computations of sensitivities to interface and boundary parameters and conditions, the 1st-CASAM enables the quantification of the effects of manufacturing tolerances on the responses of physical and engineering systems. Ongoing research will generalize the methodology presented in this work, aiming at computing exactly and efficiently higher-order response sensitivities for coupled systems involving imprecisely known interfaces, parameters, and boundaries. 展开更多
关键词 Adjoint sensitivity Analysis (1st-CASAM) response Sensitivities for Coupled Nonlinear Systems Imprecisely Known Interfaces Imprecisely Known Parameters Imprecisely Known Boundaries
下载PDF
INFLUENCE OF SHOT AND STEP RESPONSE ON PARAMETRIC SENSITIVITY UNDER THE STIMULUS-RESPONSE OF ANALYSIS
6
作者 于千 《Chinese Journal of Chemical Engineering》 SCIE EI CAS 1985年第1期109-119,共11页
Shot and step response measurements were carried out with inert bed and adsorption bed both under iso-thermal conditions.Parameter values were determined from a time domain analysis of the measured inputand response s... Shot and step response measurements were carried out with inert bed and adsorption bed both under iso-thermal conditions.Parameter values were determined from a time domain analysis of the measured inputand response signal.Sensitivity test in the parameter values showed that shot response measurements maygive more reliable parameter values than step measurements.Since Kubin[1]and Kucera[2]proposed a parameter estimation technique based on a moment methodfor adsorption system,attention has been focused on dynamic input-output measurements with variouspacked bed systems for the parameter estimation.The object of this work is to compare shot and step re-sponse measurements and see which measurement gives more reliable parameter values. 展开更多
关键词 ENG INFLUENCE OF SHOT AND STEP response ON PARAMETRIC sensitivity UNDER THE STIMULUS-response OF ANALYSIS ZT IND STEP
下载PDF
The First-Order Comprehensive Sensitivity Analysis Methodology (1<sup>st</sup>-CASAM) for Scalar-Valued Responses: II. Illustrative Application to a Heat Transport Benchmark Model
7
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2020年第2期290-310,共21页
This work illustrates the application of the 1<sup>st</sup>-CASAM to a paradigm heat transport model which admits exact closed-form solutions. The closed-form expressions obtained in this work for the sens... This work illustrates the application of the 1<sup>st</sup>-CASAM to a paradigm heat transport model which admits exact closed-form solutions. The closed-form expressions obtained in this work for the sensitivities of the temperature distributions within the model to the model’s parameters, internal interfaces and external boundaries can be used to benchmark commercial and production software packages for simulating heat transport. The 1<sup>st</sup>-CASAM highlights the novel finding that response sensitivities to the imprecisely known domain boundaries and interfaces can arise both from the definition of the system’s response as well as from the equations, interfaces and boundary conditions that characterize the model and its imprecisely known domain. By enabling, in premiere, the exact computations of sensitivities to interface and boundary parameters and conditions, the 1<sup>st</sup>-CASAM enables the quantification of the effects of manufacturing tolerances on the responses of physical and engineering systems. 展开更多
关键词 First-Order Comprehensive Adjoint sensitivity Analysis Methodology (1st-CASAM) response Sensitivities for Coupled Systems Involving Imprecisely Known Interfaces Parameters And Boundaries Coupled Heat Conduction and Convection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部