Damping is critical for the roll motion response of a ship in waves. A common method for the assessment of damping in a ship’s rolling motion is to perform a free-decay experiment in calm water. In this paper, we pro...Damping is critical for the roll motion response of a ship in waves. A common method for the assessment of damping in a ship’s rolling motion is to perform a free-decay experiment in calm water. In this paper, we propose an approach for estimating nonlinear damping that involves a linear exponential analytical approximation of the experimental roll free-decay amplitudes, fol- lowed by parametric identification based on the asymptotic method. The restoring moment can be strongly nonlinear. To validate this method, we first analyzed numerically simulated roll free-decay data using rolling equations with two alternative parametric forms: linear-plus-quadratic and linear-plus-cubic damping. By doing so, we obtained accurate estimates of nonlinear damping coefficients, even for large initial roll amplitudes. Then, we applied the proposed method to real free-decay data obtained from a scale model of a bulk barrier, and found the simulated results to be in good agreement with the experimental data. Using only free-decay peak data, the proposed method can be used to estimate nonlinear roll-damping coefficients for conditions with a strongly nonlinear restoring moment and large initial roll amplitudes.展开更多
A gyro-stabilizer is the interesting system that it can apply to marine vessels for diminishes roll motion.Today it has potentially light weight with no hydrodynamics drag and effective at zero forward speed.The...A gyro-stabilizer is the interesting system that it can apply to marine vessels for diminishes roll motion.Today it has potentially light weight with no hydrodynamics drag and effective at zero forward speed.The twin-gyroscope was chosen.Almost,the modelling for designing the system use linear model that it might not comprehensive mission requirement such as high sea condition.The non-linearity analysis was proved by comparison the results between linear and non-linear model of gyro-stabilizer throughout frequency domain also same wave input,constrains and limitations.Moreover,they were cross checked by simulating in time domain.The comparison of interested of linear and non-linear close loop model in frequency domain has demonstrated the similar characteristics but gave different values at same frequency obviously.The results were confirmed again by simulation in irregular beam sea on time domain and they demonstrate the difference of behavior of both systems while the gyro-stabilizers are switching on and off.From the resulting analysis,the non-linear gyro-stabilizer model gives more real results that correspond to more accuracy in a designing gyro-stabilizer control system for various amplitudes and frequencies operating condition especially high sea condition.展开更多
基金support from the National Natural Science Foundation of China (No. 5160 9224)the Major Program of National Natural Science Foundation of China (No. 51490675)the Fundamental Research Funds for the Central Universities (No. 201513056)
文摘Damping is critical for the roll motion response of a ship in waves. A common method for the assessment of damping in a ship’s rolling motion is to perform a free-decay experiment in calm water. In this paper, we propose an approach for estimating nonlinear damping that involves a linear exponential analytical approximation of the experimental roll free-decay amplitudes, fol- lowed by parametric identification based on the asymptotic method. The restoring moment can be strongly nonlinear. To validate this method, we first analyzed numerically simulated roll free-decay data using rolling equations with two alternative parametric forms: linear-plus-quadratic and linear-plus-cubic damping. By doing so, we obtained accurate estimates of nonlinear damping coefficients, even for large initial roll amplitudes. Then, we applied the proposed method to real free-decay data obtained from a scale model of a bulk barrier, and found the simulated results to be in good agreement with the experimental data. Using only free-decay peak data, the proposed method can be used to estimate nonlinear roll-damping coefficients for conditions with a strongly nonlinear restoring moment and large initial roll amplitudes.
文摘A gyro-stabilizer is the interesting system that it can apply to marine vessels for diminishes roll motion.Today it has potentially light weight with no hydrodynamics drag and effective at zero forward speed.The twin-gyroscope was chosen.Almost,the modelling for designing the system use linear model that it might not comprehensive mission requirement such as high sea condition.The non-linearity analysis was proved by comparison the results between linear and non-linear model of gyro-stabilizer throughout frequency domain also same wave input,constrains and limitations.Moreover,they were cross checked by simulating in time domain.The comparison of interested of linear and non-linear close loop model in frequency domain has demonstrated the similar characteristics but gave different values at same frequency obviously.The results were confirmed again by simulation in irregular beam sea on time domain and they demonstrate the difference of behavior of both systems while the gyro-stabilizers are switching on and off.From the resulting analysis,the non-linear gyro-stabilizer model gives more real results that correspond to more accuracy in a designing gyro-stabilizer control system for various amplitudes and frequencies operating condition especially high sea condition.