3D reticulated ceramics (3DRCs) with the composition containing SrFe12O19-SiC-TiO2 were prepared by a replication process with polyurethane sponges as the template in ceramic slurry. The electrical conductivity, diele...3D reticulated ceramics (3DRCs) with the composition containing SrFe12O19-SiC-TiO2 were prepared by a replication process with polyurethane sponges as the template in ceramic slurry. The electrical conductivity, dielectric and magnetic parameters of 3D reticulated ceramics (3DRCs) were measured with changes in cell size of the sponges, contents in the slurry and sintering temperature in this paper. Discussions about the influential factors of those parameters were focused on their electrical conductivity. The experimental results indicated that the electrical conductivity of 3DRCs raised with the increase of cell size, SiC/SrO 6Fe2O3 with weight ratio and sintering temperature. X-ray diffractions and SEM were used to investigate the relationship between electrical conductivity and sintering temperature. Deoxidizing reactions of SrO 6Fe2O3 caused the increasing electrical conductivity. The real part of permittivity (ε') and imaginary part of permeability (μ') raised with the increase of electrical conductivity (σ). The imaginary part of permittivity (ε') has a maximum at 10o S/cm with the increase of a, and the real part of permeability (μ') changes slightly with the increase of a. When a is at the range of 10-4 S/cm to 10o S/cm (a semi conductive state), both the imagine part of permittivity and permeability raises with increasing a, therefore, the 3DRCs present their high electromagnetic loss properties.展开更多
3-dimensional reticulated ceramics (3DRCs) and their same composition ceramic disks(SCCDs) were fabricated by sol-gel method, with the composition of SrO-6Fe203(30%), SiC(35%) and Ti02(35%), sintered at 1200C in N2. T...3-dimensional reticulated ceramics (3DRCs) and their same composition ceramic disks(SCCDs) were fabricated by sol-gel method, with the composition of SrO-6Fe203(30%), SiC(35%) and Ti02(35%), sintered at 1200C in N2. The dielectric and magnetic parameters of such 3DRCs and their SCCDs were measured respectively in a temperature range from room temperature to 800癈 and in a frequency range from 2.6 GHz to 18 GHz. The results showed that the dielectric and magnetic loss of 3DRCs were obviously larger than those of their SCCDs in a wide range of temperature and the whole range of measuring frequency. The increase of dielectric loss of SDRCs was much higher than that of magnetic loss compared to their SCCDs, which was found due to the 3D net structure extrinsic characteristics.展开更多
An innovative approach has been developed to fabricate reticulated porous ceramics (RPCs) with uniform macrostruc-ture by using the polymeric sponge as the templates. In this approach, the coating process comprises of...An innovative approach has been developed to fabricate reticulated porous ceramics (RPCs) with uniform macrostruc-ture by using the polymeric sponge as the templates. In this approach, the coating process comprises of two stages. In the first stage, the thicker slurry was used to coat: uniformly the sponge substrate. The green body was preheated to produce a reticulated preform with enough handling strength after the sponge was burned out. In the second stage, the thinner slurry was used to coat uniformly the preform. The population of the microscopic and macroscopic flaws in the structure is reduced significantly by recoating process. A few filled cells and cell faces occur in the fabrication and the struts were thickened. A statistical evaluation by means of Weibull statistics was carried out on the bend strength data of RPCs, which were prepared by the traditional approach and innovative approach, respectively. The result shows that the mechanical reliability of RPCs is improved by the innovative approach. This innovative approach is very simple and controlled easily, and will open up new technological applications for RPCs.展开更多
The primary impregnation slurry was prepared using active alumina(56.25 mass%),kaolin(15 mass%),zirconia(3.75 mass%),deionized water(25 mass%),and extra adding FS(0.2 mass%)and CMC(0.4 mass%).The effects of the active...The primary impregnation slurry was prepared using active alumina(56.25 mass%),kaolin(15 mass%),zirconia(3.75 mass%),deionized water(25 mass%),and extra adding FS(0.2 mass%)and CMC(0.4 mass%).The effects of the active alumina particle size(d50=5.043,2.934,and 1.629μm)on the rheology and the thixotropy of the slurry were researched.It was found that the bimodal activeα-Al2O3(AMA-10)with d50=1.629μm was optimum.The secondary impregnation slurry was prepared using AMA-10,kaolin and zirconia as the main raw materials.Then the alumina-based reticulated porous ceramics were fabricated by the organic foam impregnation method combined with a secondary vacuum impregnation process.The influence of the AMA-10 content on the properties of the ceramics was studied.The residual stress of the specimens was analyzed by finite element analysis.The results show that the smaller alumina particle size and multimodal distribution are beneficial to the thixotropy of the primary impregnation slurry.The secondary vacuum impregnation technique can significantly improve the mechanical properties,the thermal shock resistance and the residual strength of the alumina-based reticulated porous ceramics.With the decrease of alumina content in the secondary impregnation slurry,the residual stress of the external layer of ceramic reinforcement gradually changes from tensile stress to compressive stress,which effectively inhibits the expansion of the surface crack,and remarkably improves the crushing strength retention ratio of alumina reticulated porous ceramics.展开更多
A novel super-hybrid composite (NSHC) is prepared with three-dimension reticulated SiC ceramic (3DRC), high performance carbon fibers and modified phenolic resin (BPR) in this paper. Ablation performance of super-hybr...A novel super-hybrid composite (NSHC) is prepared with three-dimension reticulated SiC ceramic (3DRC), high performance carbon fibers and modified phenolic resin (BPR) in this paper. Ablation performance of super-hybrid composite is studied. The results show that the NSHC has less linear ablation rate compared with pure BPR and CF/BPR composite, for example, its linear ablation rate is 50% of CF/BPR at the same fiber content. Mass ablation rate of the NSHC is slightly lower than that of pure BPR and CF/BPR composite because of their difference in the density. Scanning electron microscopic analysis indicates that 3DRC can increase anti-erosion capacity of materials because its special reticulated structure can control the deformation of materials and strengthen the stability of integral structure.展开更多
A novel super-hybrid composite (NSHC) was boron-modified phenolic resin (BPR) with three-dimensional reticulated SiC ceramic (3DRC) and high silica fibers. Ablation performance of the NSHC was studied. The results sho...A novel super-hybrid composite (NSHC) was boron-modified phenolic resin (BPR) with three-dimensional reticulated SiC ceramic (3DRC) and high silica fibers. Ablation performance of the NSHC was studied. The results show that the linear ablation rate of NSHC was lower than that of pure BPR and the high silica/BPR composite. Its linear ablation rate is 1/17 of the high silica/BPR. Mass ablation rate of the NSHC is very close to that of the pure BPR and the high silica/BPR composite. Scanning electron microscope (SEM) analysis indicates that 3DRC has scarcely changed its shape at the ablation temperature. Its special reticulated structure can restrict the materials deformation and prevent high velocity heat flow from eroding the surface of the materials largely and thus increase ablation resistance of the NSHC.展开更多
文摘3D reticulated ceramics (3DRCs) with the composition containing SrFe12O19-SiC-TiO2 were prepared by a replication process with polyurethane sponges as the template in ceramic slurry. The electrical conductivity, dielectric and magnetic parameters of 3D reticulated ceramics (3DRCs) were measured with changes in cell size of the sponges, contents in the slurry and sintering temperature in this paper. Discussions about the influential factors of those parameters were focused on their electrical conductivity. The experimental results indicated that the electrical conductivity of 3DRCs raised with the increase of cell size, SiC/SrO 6Fe2O3 with weight ratio and sintering temperature. X-ray diffractions and SEM were used to investigate the relationship between electrical conductivity and sintering temperature. Deoxidizing reactions of SrO 6Fe2O3 caused the increasing electrical conductivity. The real part of permittivity (ε') and imaginary part of permeability (μ') raised with the increase of electrical conductivity (σ). The imaginary part of permittivity (ε') has a maximum at 10o S/cm with the increase of a, and the real part of permeability (μ') changes slightly with the increase of a. When a is at the range of 10-4 S/cm to 10o S/cm (a semi conductive state), both the imagine part of permittivity and permeability raises with increasing a, therefore, the 3DRCs present their high electromagnetic loss properties.
文摘3-dimensional reticulated ceramics (3DRCs) and their same composition ceramic disks(SCCDs) were fabricated by sol-gel method, with the composition of SrO-6Fe203(30%), SiC(35%) and Ti02(35%), sintered at 1200C in N2. The dielectric and magnetic parameters of such 3DRCs and their SCCDs were measured respectively in a temperature range from room temperature to 800癈 and in a frequency range from 2.6 GHz to 18 GHz. The results showed that the dielectric and magnetic loss of 3DRCs were obviously larger than those of their SCCDs in a wide range of temperature and the whole range of measuring frequency. The increase of dielectric loss of SDRCs was much higher than that of magnetic loss compared to their SCCDs, which was found due to the 3D net structure extrinsic characteristics.
文摘An innovative approach has been developed to fabricate reticulated porous ceramics (RPCs) with uniform macrostruc-ture by using the polymeric sponge as the templates. In this approach, the coating process comprises of two stages. In the first stage, the thicker slurry was used to coat: uniformly the sponge substrate. The green body was preheated to produce a reticulated preform with enough handling strength after the sponge was burned out. In the second stage, the thinner slurry was used to coat uniformly the preform. The population of the microscopic and macroscopic flaws in the structure is reduced significantly by recoating process. A few filled cells and cell faces occur in the fabrication and the struts were thickened. A statistical evaluation by means of Weibull statistics was carried out on the bend strength data of RPCs, which were prepared by the traditional approach and innovative approach, respectively. The result shows that the mechanical reliability of RPCs is improved by the innovative approach. This innovative approach is very simple and controlled easily, and will open up new technological applications for RPCs.
文摘The primary impregnation slurry was prepared using active alumina(56.25 mass%),kaolin(15 mass%),zirconia(3.75 mass%),deionized water(25 mass%),and extra adding FS(0.2 mass%)and CMC(0.4 mass%).The effects of the active alumina particle size(d50=5.043,2.934,and 1.629μm)on the rheology and the thixotropy of the slurry were researched.It was found that the bimodal activeα-Al2O3(AMA-10)with d50=1.629μm was optimum.The secondary impregnation slurry was prepared using AMA-10,kaolin and zirconia as the main raw materials.Then the alumina-based reticulated porous ceramics were fabricated by the organic foam impregnation method combined with a secondary vacuum impregnation process.The influence of the AMA-10 content on the properties of the ceramics was studied.The residual stress of the specimens was analyzed by finite element analysis.The results show that the smaller alumina particle size and multimodal distribution are beneficial to the thixotropy of the primary impregnation slurry.The secondary vacuum impregnation technique can significantly improve the mechanical properties,the thermal shock resistance and the residual strength of the alumina-based reticulated porous ceramics.With the decrease of alumina content in the secondary impregnation slurry,the residual stress of the external layer of ceramic reinforcement gradually changes from tensile stress to compressive stress,which effectively inhibits the expansion of the surface crack,and remarkably improves the crushing strength retention ratio of alumina reticulated porous ceramics.
文摘A novel super-hybrid composite (NSHC) is prepared with three-dimension reticulated SiC ceramic (3DRC), high performance carbon fibers and modified phenolic resin (BPR) in this paper. Ablation performance of super-hybrid composite is studied. The results show that the NSHC has less linear ablation rate compared with pure BPR and CF/BPR composite, for example, its linear ablation rate is 50% of CF/BPR at the same fiber content. Mass ablation rate of the NSHC is slightly lower than that of pure BPR and CF/BPR composite because of their difference in the density. Scanning electron microscopic analysis indicates that 3DRC can increase anti-erosion capacity of materials because its special reticulated structure can control the deformation of materials and strengthen the stability of integral structure.
文摘A novel super-hybrid composite (NSHC) was boron-modified phenolic resin (BPR) with three-dimensional reticulated SiC ceramic (3DRC) and high silica fibers. Ablation performance of the NSHC was studied. The results show that the linear ablation rate of NSHC was lower than that of pure BPR and the high silica/BPR composite. Its linear ablation rate is 1/17 of the high silica/BPR. Mass ablation rate of the NSHC is very close to that of the pure BPR and the high silica/BPR composite. Scanning electron microscope (SEM) analysis indicates that 3DRC has scarcely changed its shape at the ablation temperature. Its special reticulated structure can restrict the materials deformation and prevent high velocity heat flow from eroding the surface of the materials largely and thus increase ablation resistance of the NSHC.