The seedling population structure of Pteleopsis suberosa and their regeneration mechanisms were investigated in four roadside environments (graded, adjacent, intermediate and ungraded areas) along paved and unpaved ...The seedling population structure of Pteleopsis suberosa and their regeneration mechanisms were investigated in four roadside environments (graded, adjacent, intermediate and ungraded areas) along paved and unpaved roads in West Africa. A total of 203 quadrats of 2 m × 5 m in size were surveyed and placed along transects parallel to the roads. Within each quadrat, the total number of seedlings and the number of living shoots per seedling base were recorded. Regeneration mechanisms were determined by assessing basal and aerial sprouts and excavating the root systems below ground level. The results show that the total seedling density and the densities of single- and multi-stemmed individuals varied significantly (p 〈 0.05) among the four roadside environments. However, all seedlings were produced asexually; root suckers were predominant (98%) compared to water sprout (1%) and coppices (less than 1%). This study demonstrates that an intermediate level of soil disturbance from grading along paved and unpaved roads may stimulate P. suberosa regeneration by root suck- ering. Road type (paved and unpaved) did not affect seedling density, but was a highly significant variable in relation to the coppicing ability of P. suberosa populations in roadside sites. In conclusion, P. suberosa is a disturbance-tolerant species which can proliferate mainly by root suckering after roadwork disturbance.展开更多
Roadworks are perhaps the most controversial topic in transport professional field. On one hand, they are a necessity to assure the current and future functionality of the traffic network, while on the other, they are...Roadworks are perhaps the most controversial topic in transport professional field. On one hand, they are a necessity to assure the current and future functionality of the traffic network, while on the other, they are seen as a major disturbance by road users with concerns for excessive travel time delays. The impact of roadworks is usually analysed at a local level however the network-wide effects are crucial to ensure reliable travel times. Moreover the analysis usually focusses on private cars and the reliability impact on public transport services are too important to ignore. This paper investigates the impact of roadworks undertaken on a given road link over wider parts of the network and assesses travel time reliability for both cars and buses. This research involves setting up of a con- ventional network assignment model to arrive at the route choice of drivers as a result of the roadworks and then integrates the outcomes with a microsimulation model to generate space-time trajectories to arrive at travel times of individual vehicles. We adopted a reli- ability measure from the literature to compute travel time reliability of a given type of vehicle by unique origin-destination (O-D) pair combinations and also more generally to provide a wider picture at an aggregated network level. The method was tested on a real life network in England, and travel time reliability results were analysed both at the network scale and significant O-D pair level for private cars and bus routes.展开更多
基金Swedish International Development Cooperation Agency (Sida).
文摘The seedling population structure of Pteleopsis suberosa and their regeneration mechanisms were investigated in four roadside environments (graded, adjacent, intermediate and ungraded areas) along paved and unpaved roads in West Africa. A total of 203 quadrats of 2 m × 5 m in size were surveyed and placed along transects parallel to the roads. Within each quadrat, the total number of seedlings and the number of living shoots per seedling base were recorded. Regeneration mechanisms were determined by assessing basal and aerial sprouts and excavating the root systems below ground level. The results show that the total seedling density and the densities of single- and multi-stemmed individuals varied significantly (p 〈 0.05) among the four roadside environments. However, all seedlings were produced asexually; root suckers were predominant (98%) compared to water sprout (1%) and coppices (less than 1%). This study demonstrates that an intermediate level of soil disturbance from grading along paved and unpaved roads may stimulate P. suberosa regeneration by root suck- ering. Road type (paved and unpaved) did not affect seedling density, but was a highly significant variable in relation to the coppicing ability of P. suberosa populations in roadside sites. In conclusion, P. suberosa is a disturbance-tolerant species which can proliferate mainly by root suckering after roadwork disturbance.
文摘Roadworks are perhaps the most controversial topic in transport professional field. On one hand, they are a necessity to assure the current and future functionality of the traffic network, while on the other, they are seen as a major disturbance by road users with concerns for excessive travel time delays. The impact of roadworks is usually analysed at a local level however the network-wide effects are crucial to ensure reliable travel times. Moreover the analysis usually focusses on private cars and the reliability impact on public transport services are too important to ignore. This paper investigates the impact of roadworks undertaken on a given road link over wider parts of the network and assesses travel time reliability for both cars and buses. This research involves setting up of a con- ventional network assignment model to arrive at the route choice of drivers as a result of the roadworks and then integrates the outcomes with a microsimulation model to generate space-time trajectories to arrive at travel times of individual vehicles. We adopted a reli- ability measure from the literature to compute travel time reliability of a given type of vehicle by unique origin-destination (O-D) pair combinations and also more generally to provide a wider picture at an aggregated network level. The method was tested on a real life network in England, and travel time reliability results were analysed both at the network scale and significant O-D pair level for private cars and bus routes.