期刊文献+
共找到172篇文章
< 1 2 9 >
每页显示 20 50 100
Robust Forecasting-Aided State Estimation Considering Uncertainty in Distribution System
1
作者 Dongchen Hou Yonghui Sun +1 位作者 Linchuang Zhang Sen Wang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第4期1632-1641,共10页
With the development of the smart grid,the distribution system operation conditions become more complex and changeable.Furthermore,due to the influence of observation outliers and uncertain noise statistics,it is more... With the development of the smart grid,the distribution system operation conditions become more complex and changeable.Furthermore,due to the influence of observation outliers and uncertain noise statistics,it is more difficult to grasp the dynamic operation characteristics of distribution system.In order to address these problems,by using projection statistics and the noise covariance updating technology based on the Sage-Husa noise estimator,for distribution power system with outliers and uncertain noise statistics,a robust adaptive cubature Kalman filter forecasting-aided state estimation method is proposed based on generalized-maximum likelihood type estimator.Furthermore,an adaptive strategy,which can enhance the filtering accuracy under normal conditions,is presented.In the simulation part,the branch parameters and node load parameters of the test system are appropriately modified to simulate the asymmetry of the three-phase branch parameters and the asymmetry of the three-phase loads.Finally,through simulation experiments on the improved test system,it is verified that the robust forecasting-aided state estimation method,presented in this paper,can effectively perceive the actual operating state of the distribution network in different simulation scenarios. 展开更多
关键词 Cubature Kalman filter distribution power system forecasting-aided state estimation projection statistics
原文传递
Machine Learning-Based Channel State Estimators for 5G Wireless Communication Systems
2
作者 Mohamed Hassan Essai Ali Fahad Alraddady +1 位作者 Mo’ath Y.Al-Thunaibat Shaima Elnazer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期755-778,共24页
For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pa... For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pairs through offline training to estimate the channel state information.Also,it utilizes pilots to offer more helpful information about the communication channel.The proposedCNN-CSE performance is compared with previously published results for Bidirectional/long short-term memory(BiLSTM/LSTM)NNs-based CSEs.The CNN-CSE achieves outstanding performance using sufficient pilots only and loses its functionality at limited pilots compared with BiLSTM and LSTM-based estimators.Using three different loss function-based classification layers and the Adam optimization algorithm,a comparative study was conducted to assess the performance of the presented DNNs-based CSEs.The BiLSTM-CSE outperforms LSTM,CNN,conventional least squares(LS),and minimum mean square error(MMSE)CSEs.In addition,the computational and learning time complexities for DNN-CSEs are provided.These estimators are promising for 5G and future communication systems because they can analyze large amounts of data,discover statistical dependencies,learn correlations between features,and generalize the gotten knowledge. 展开更多
关键词 DLNNs channel state estimator 5G and beyond communication systems robust loss functions
下载PDF
An Embedded Consensus ADMM Distribution Algorithm Based on Outer Approximation for Improved Robust State Estimation of Networked Microgrids
3
作者 Zifeng Zhang Yuntao Ju 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第4期1217-1226,共10页
Networked microgrids(NMGs)are critical in theaccommodation of distributed renewable energy.However,theexisting centralized state estimation(SE)cannot meet the demandsof NMGs in distributed energy management.The curren... Networked microgrids(NMGs)are critical in theaccommodation of distributed renewable energy.However,theexisting centralized state estimation(SE)cannot meet the demandsof NMGs in distributed energy management.The currentestimator is also not robust against bad data.This study introducesthe concepts of relative error to construct an improvedrobust SE(IRSE)optimization model with mixed-integer nonlinearprogramming(MINLP)that overcomes the disadvantage ofinaccurate results derived from different measurements whenthe same tolerance range is considered in the robust SE(RSE).To improve the computation efficiency of the IRSE optimizationmodel,the number of binary variables is reduced based on theprojection statistics and normalized residual methods,which effectivelyavoid the problem of slow convergence or divergenceof the algorithm caused by too many integer variables.Finally,an embedded consensus alternating direction of multiplier method(ADMM)distribution algorithm based on outer approximation(OA)is proposed to solve the IRSE optimization model.This algorithm can accurately detect bad data and obtain SE resultsthat communicate only the boundary coupling informationwith neighbors.Numerical tests show that the proposed algorithmeffectively detects bad data,obtains more accurate SE results,and ensures the protection of private information in all microgrids. 展开更多
关键词 Distributed optimization alternating direction of multiplier methods(ADMM) robust state estimation(RSE) mixed-integer nonlinear programming(MINLP) networked microgrid(NMG)
原文传递
Analytical Verification of Performance of Deep Neural Network Based Time-synchronized Distribution System State Estimation
4
作者 Behrouz Azimian Shiva Moshtagh +1 位作者 Anamitra Pal Shanshan Ma 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第4期1126-1134,共9页
Recently,we demonstrated the success of a time-synchronized state estimator using deep neural networks(DNNs)for real-time unobservable distribution systems.In this paper,we provide analytical bounds on the performance... Recently,we demonstrated the success of a time-synchronized state estimator using deep neural networks(DNNs)for real-time unobservable distribution systems.In this paper,we provide analytical bounds on the performance of the state estimator as a function of perturbations in the input measurements.It has already been shown that evaluating performance based only on the test dataset might not effectively indicate the ability of a trained DNN to handle input perturbations.As such,we analytically verify the robustness and trustworthiness of DNNs to input perturbations by treating them as mixed-integer linear programming(MILP)problems.The ability of batch normalization in addressing the scalability limitations of the MILP formulation is also highlighted.The framework is validated by performing time-synchronized distribution system state estimation for a modified IEEE 34-node system and a real-world large distribution system,both of which are incompletely observed by micro-phasor measurement units. 展开更多
关键词 Deep neural network(DNN) distribution system state estimation(DSSE) mixed-integer linear programming(MILP) robustNESS trustworthiness
原文传递
Dynamic State Estimation of Power Systems with Uncertainties Based on Robust Adaptive Unscented Kalman Filter
5
作者 Dongchen Hou Yonghui Sun +2 位作者 Jianxi Wang Linchuang Zhang Sen Wang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第4期1065-1074,共10页
In this paper,a robust adaptive unscented Kalman filter(RAUKF)is developed to mitigate the unfavorable effects derived from uncertainties in noise and in the model.To address these issues,a robust M-estimator is first... In this paper,a robust adaptive unscented Kalman filter(RAUKF)is developed to mitigate the unfavorable effects derived from uncertainties in noise and in the model.To address these issues,a robust M-estimator is first utilized to update the measurement noise covariance.Next,to deal with the effects of model parameter errors while considering the computational complexity and real-time requirements of dynamic state estimation,an adaptive update method is produced.The proposed method is integrated with spherical simplex unscented transformation technology,and then a novel derivative-free filter is proposed to dynamically track the states of the power system against uncertainties.Finally,the effectiveness and robustness of the proposed method are demonstrated through extensive simulation experiments on an IEEE 39-bus test system.Compared with other methods,the proposed method can capture the dynamic characteristics of a synchronous generator more reliably. 展开更多
关键词 Dynamic state estimation Kalman filter synchronous generator unscented transformation robust estimation
原文传递
Robust State Estimation of Active Distribution Networks with Multi-source Measurements
6
作者 Zhelin Liu Peng Li +4 位作者 Chengshan Wang Hao Yu Haoran Ji Wei Xi Jianzhong Wu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第5期1540-1552,共13页
The volatile and intermittent nature of distributed generators(DGs) in active distribution networks(ADNs) increases the uncertainty of operating states. The introduction of distribution phasor measurement units(D-PMUs... The volatile and intermittent nature of distributed generators(DGs) in active distribution networks(ADNs) increases the uncertainty of operating states. The introduction of distribution phasor measurement units(D-PMUs) enhances the monitoring level. The trade-offs of computational performance and robustness of state estimation in monitoring the network states are of great significance for ADNs with D-PMUs and DGs. This paper proposes a second-order cone programming(SOCP) based robust state estimation(RSE) method considering multi-source measurements. Firstly, a linearized state estimation model related to the SOCP state variables is formulated. The phase angle measurements of D-PMUs are converted to equivalent power measurements. Then, a revised SOCP-based RSE method with the weighted least absolute value estimator is proposed to enhance the convergence and bad data identification. Multi-time slots of D-PMU measurements are utilized to improve the estimation accuracy of RSE. Finally, the effectiveness of the proposed method is illustrated in the modified IEEE 33-node and IEEE 123-node systems. 展开更多
关键词 Active distribution network(ADN) robust state estimation(RSE) second-order cone programming(SOCP) multi-source measurement bad data identification
原文传递
基于平方根UPF的电力系统鲁棒预测状态估计
7
作者 王要强 赵楷 +2 位作者 王义 王克文 梁军 《郑州大学学报(工学版)》 CAS 北大核心 2024年第3期119-126,142,共9页
针对辅助预测状态估计器在迭代计算中会出现状态预测误差协方差矩阵不正定,导致估计精度差甚至发散的问题,提出了基于平方根UPF的电力系统鲁棒辅助预测状态估计。该方法采用两种数学方法:矩阵Cholesky分解因子更新和矩阵QR分解,引入平... 针对辅助预测状态估计器在迭代计算中会出现状态预测误差协方差矩阵不正定,导致估计精度差甚至发散的问题,提出了基于平方根UPF的电力系统鲁棒辅助预测状态估计。该方法采用两种数学方法:矩阵Cholesky分解因子更新和矩阵QR分解,引入平方根技术动态更新状态预测误差协方差矩阵以保持状态预测误差协方差矩阵的正定性。运用MATLAB进行仿真模拟测试,结果表明:IEEE 30节点系统非高斯噪声测试中,平方根UPF电压相角的均方根误差平均值为UPF相应测试值的0.09%,平方根UPF电压幅值的均方根误差平均值为UPF相应测试值的0.14%;IEEE 57节点系统非高斯噪声测试中,平方根UPF电压相角的均方根误差平均值为UPF相应测试值的0.67%,平方根UPF电压幅值的均方根误差平均值为UPF相应测试值的0.57%。所提出的平方根UPF对解决辅助预测状态估计中状态预测误差协方差矩阵不正定的问题具有很好的效果,具有更高估计精度和鲁棒性。 展开更多
关键词 电力系统 无迹粒子滤波 鲁棒辅助预测状态估计 不正定性 平方根UPF
下载PDF
一种高斯-重尾切换分布鲁棒卡尔曼滤波器
8
作者 黄伟 付红坡 +1 位作者 李煜 章卫国 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第4期12-23,共12页
为降低实际应用中由强未知干扰和仪器故障对观测造成的影响,减轻随机和未建模干扰对系统的侵蚀,从而提升系统在非高斯噪声环境下的状态估计精度,提高滤波器的鲁棒性能,提出了一种基于高斯-重尾切换分布的鲁棒卡尔曼滤波器(Gaussian-heav... 为降低实际应用中由强未知干扰和仪器故障对观测造成的影响,减轻随机和未建模干扰对系统的侵蚀,从而提升系统在非高斯噪声环境下的状态估计精度,提高滤波器的鲁棒性能,提出了一种基于高斯-重尾切换分布的鲁棒卡尔曼滤波器(Gaussian-heavy-tailed switching distribution based robust Kalman filter,GHTSRKF)。首先,通过自适应学习高斯分布和一种重尾分布之间的切换概率将噪声建模为GHTS(Gaussian-heavy-tailed switching)分布,所设计的GHTS分布可以通过在线调整高斯分布和新的重尾分布之间的切换概率来对非平稳重尾噪声进行建模,具有虚拟协方差的高斯分布用于处理协方差矩阵不准确的高斯噪声。其次,引入两个分别服从Categorical分布与伯努利分布的辅助参数将GHTS分布表示为一个分层高斯形式,进一步利用变分贝叶斯方法推导了GHTSRKF。最后,利用一个仿真场景对几种不同的RKFs(robust Kalman filters)进行了对比验证。结果表明,所提出的GHTSRKF算法的估计精度对初始状态的选取不敏感,精度优于其他RKFs,它的RMSEs最接近噪声信息准确的KFTNC(KF with true noise covariances)的RMSEs(root mean square errors),且当系统与量测噪声是未知时变高斯噪声时,相比于现有的滤波器,GHTSRKF具有更好的估计性能,从而验证了GHTSRKF的有效性。 展开更多
关键词 状态估计 非平稳重尾噪声 自适应学习 鲁棒滤波器 变分贝叶斯方法
下载PDF
采用改进最大相关熵自适应迭代容积卡尔曼滤波算法的锂离子电池荷电状态估计
9
作者 巫春玲 赵玉冰 +2 位作者 马耀 张湧 孟锦豪 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第11期52-64,共13页
针对非高斯噪声干扰下传统滤波算法在估计锂离子电池荷电状态(SOC)时存在不稳定以及精度低的问题,提出一种改进的最大相关熵自适应迭代容积卡尔曼滤波(IMCC-AICKF)算法,用于估计锂离子电池荷电状态。所提算法将加权最小二乘方法与最大... 针对非高斯噪声干扰下传统滤波算法在估计锂离子电池荷电状态(SOC)时存在不稳定以及精度低的问题,提出一种改进的最大相关熵自适应迭代容积卡尔曼滤波(IMCC-AICKF)算法,用于估计锂离子电池荷电状态。所提算法将加权最小二乘方法与最大相关熵准则(MCC)相结合,定义了一种新的代价权函数作为优化准则,通过优化噪声最小协方差矩阵来减小滤波误差,保证长时间滤波的收敛性和稳定性;再与自适应迭代容积卡尔曼滤波(AICKF)算法相结合,对过程噪声协方差和测量噪声协方差进行更新来提高估计的准确性和鲁棒性。基于两种电池数据,在非高斯噪声干扰下,运用所提算法对电池SOC进行估计,仿真结果表明:与容积卡尔曼滤波(CKF)算法和最大相关熵容积卡尔曼滤波(IMCC-CKF)算法相比,IMCC-AICKF算法对荷电状态估计的最大绝对误差、平均绝对误差和均方根误差都是最小的,且平均绝对误差和均方根误差均小于1%;在给定初始值错误的情况下,IMCC-AICKF算法可以准确收敛到真实值,具有较好的鲁棒性。所提算法在非高斯噪声下能实现更准确的估计,是一种估计精度高且鲁棒性好的SOC估计方法。 展开更多
关键词 荷电状态估计 最大相关熵准则 容积卡尔曼滤波 非高斯噪声 鲁棒性
下载PDF
面向电-气综合能源系统的MEAV抗差状态估计法
10
作者 李大华 张涵霖 +3 位作者 田禾 高强 陈浩 何恩超 《电工技术》 2024年第1期21-27,共7页
为了实现电-气综合能源系统更为协调精确的状态估计,参考电网状态估计方法,基于最大指数绝对值(Maximum Exponential Absolute Value,MEAV)状态估计建立了电力-燃气网络的稳态模型。采用牛顿法作为基本算法,对系统进行能流计算以及MEAV... 为了实现电-气综合能源系统更为协调精确的状态估计,参考电网状态估计方法,基于最大指数绝对值(Maximum Exponential Absolute Value,MEAV)状态估计建立了电力-燃气网络的稳态模型。采用牛顿法作为基本算法,对系统进行能流计算以及MEAV等价模型的求解。最后,通过30个电网节点和22个燃气节点的耦合系统的仿真实验,验证了所提出的方法在获得电-气互联网络准确运行信息和抑制不良数据方面的能力。 展开更多
关键词 电-气综合能源系统 最大指数绝对值 状态估计 抗差估计 稳态分析
下载PDF
考虑不良杠杆量测的电力系统抗差状态估计方法
11
作者 黄亚峰 朱登宝 《电气自动化》 2024年第2期22-24,27,共4页
针对电力系统状态估计中,不良杠杆量测会造成坏数据辨识失败,进而导致状态估计结果精度低的问题,基于广义潜能指标和中国科学院大地测量与地球物理研究所提出的IGGⅢ函数,提出了一种考虑不良杠杆量测的电力系统抗差状态估计方法。首先... 针对电力系统状态估计中,不良杠杆量测会造成坏数据辨识失败,进而导致状态估计结果精度低的问题,基于广义潜能指标和中国科学院大地测量与地球物理研究所提出的IGGⅢ函数,提出了一种考虑不良杠杆量测的电力系统抗差状态估计方法。首先利用基于凝聚聚类改进后的广义潜能指标快速准确辨识杠杆量测;然后将IGGⅢ函数平滑处理后与最小二乘估计结合,实现抗差状态估计;最后在华北地区某实际风电场系统验证所提方法能准确识别杠杆量测。结果表明,所提方法有较好的抗差性能和计算精度,有利于工程实际应用。 展开更多
关键词 不良杠杆量测 广义潜能指标 凝聚聚类 IGGⅢ函数 抗差状态估计
下载PDF
基于扩张状态观测器的永磁同步电机自适应鲁棒控制 被引量:1
12
作者 孙洪博 张晓宇 柳向斌 《控制工程》 CSCD 北大核心 2024年第1期112-120,共9页
永磁同步电机无传感器控制具有简化机械结构、降低成本和延长使用寿命等优点,然而其跟踪性能受不可测系统状态和干扰的观测精度影响。为了提高其跟踪精度,提出了一种结合转子位置、转速和干扰观测器的自适应鲁棒控制方法。首先,通过滑... 永磁同步电机无传感器控制具有简化机械结构、降低成本和延长使用寿命等优点,然而其跟踪性能受不可测系统状态和干扰的观测精度影响。为了提高其跟踪精度,提出了一种结合转子位置、转速和干扰观测器的自适应鲁棒控制方法。首先,通过滑模观测器获得反电动势估计;然后,引入自适应律对参数化不确定性进行在线估计,形成以转子位置误差为输入的扩张状态观测器,提高了观测精度;最后,基于不确定性项估计和干扰观测值,设计转速跟踪误差的积分滑模面和相应的自适应滑模控制器,保证了电机系统的控制性能。仿真和实验结果验证了所提方法的有效性。 展开更多
关键词 永磁同步电机 无传感器控制 自适应估计 扩张状态观测器 鲁棒控制
原文传递
离心–气压系统基于SDRE的最优保性能鲁棒控制
13
作者 王敏林 董雪明 任雪梅 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第10期1937-1943,共7页
针对离心–气压系统,本文提出基于状态相关黎卡提方程(SDRE)的最优保性能鲁棒控制方案,实现高精度、高稳定性的气压控制.针对气压系统中存在的参数不确定性及参数未知且与状态相关的问题,首先采用自适应参数估计方法对系统未知参数进行... 针对离心–气压系统,本文提出基于状态相关黎卡提方程(SDRE)的最优保性能鲁棒控制方案,实现高精度、高稳定性的气压控制.针对气压系统中存在的参数不确定性及参数未知且与状态相关的问题,首先采用自适应参数估计方法对系统未知参数进行估计,保证参数估计误差的快速收敛.基于参数估计的结果,设计了最优保性能鲁棒控制器,该控制器在参数不确定性存在的情况下仍能保证系统性能指标达到一确定的上界.然而,由于新的黎卡提方程是与状态相关的,不易求得解析解,因此,通过泰勒级数法离线逼近SDRE的最优解.所提出的控制方案不但具有较强的鲁棒性,并且具有快速、无超调、易于应用等优点.最后,仿真分析和实验结果也验证了所设计的控制方案可以实现气压范围为1-100 kPa,随动误差低于10 Pa的高精度跟踪控制. 展开更多
关键词 离心–气压系统 参数不确定性 自适应参数估计 最优保性能鲁棒控制 状态相关黎卡提方程
下载PDF
一类含有有色噪声的鲁棒非线性扩展状态估计
14
作者 师卫国 朱可欣 +3 位作者 董燕飞 祁林 贺伟 侯宁 《火力与指挥控制》 CSCD 北大核心 2024年第3期56-64,72,共10页
针对含有有色噪声和通信带宽受限的网络化系统,设计了鲁棒非线性扩展状态估计算法。采用测量信息逐差法降低噪声相关性对系统造成的影响,再利用对数量化器进行测量信息处理,克服通信容量限制,创新地将不确定非线性项作为扩展系统的一个... 针对含有有色噪声和通信带宽受限的网络化系统,设计了鲁棒非线性扩展状态估计算法。采用测量信息逐差法降低噪声相关性对系统造成的影响,再利用对数量化器进行测量信息处理,克服通信容量限制,创新地将不确定非线性项作为扩展系统的一个状态解决非线性问题,在此基础上设计了一种鲁棒非线性扩展状态估计器。运用Young’s不等式和矩阵分析求解Riccati方程,得到估计器的误差协方差上界,实现增益的实时优化。该估计算法处理非线性系统更加方便,能够克服非线性函数处理时的保守性,且估计性能优异。 展开更多
关键词 状态估计 非线性时变系统 扩展状态 量化处理 鲁棒控制
下载PDF
电气综合系统能源抗差状态自动化估计方法研究
15
作者 张猛 李瑾 《自动化技术与应用》 2024年第8期50-54,共5页
在实际运行的电气综合系统中,容易产生少量拓扑错误,影响状态估计的效果,为了提高电气综合系统状态的估计精度,提出电气综合系统能源抗差状态自动化估计方法。建立天然气系统模型和电力子系统稳态模型,并在该模型基础上构建电气耦合模型... 在实际运行的电气综合系统中,容易产生少量拓扑错误,影响状态估计的效果,为了提高电气综合系统状态的估计精度,提出电气综合系统能源抗差状态自动化估计方法。建立天然气系统模型和电力子系统稳态模型,并在该模型基础上构建电气耦合模型,分析电力综合系统的运行状态和运行特点。根据Pseudo-Huber函数利用量测变化抑制电气综合系统中存在的坏数据和不良数据,获取电气综合系统能源抗差状态的初值和伪量值,最后通过无迹卡尔曼滤波方法实现电气综合系统能源抗差的自动化估计。实验结果表明,所提方法在系统不良数据比例下的节点电压幅值估计误差较小,可高精度完成抗差状态估计,具有较好的自动化估计效果。 展开更多
关键词 电气综合系统 Pseudo-Huber函数 抗差状态估计 量测变化 无迹卡尔曼滤波方法
下载PDF
Data-driven Robust State Estimation Through Off-line Learning and On-line Matching 被引量:8
16
作者 Yanbo Chen Hao Chen +2 位作者 Yang Jiao Jin Ma Yuzhang Lin 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第4期897-909,共13页
To overcome the shortcomings of model-driven state estimation methods, this paper proposes a data-driven robust state estimation (DDSE) method through off-line learning and on-line matching. At the off-line learning s... To overcome the shortcomings of model-driven state estimation methods, this paper proposes a data-driven robust state estimation (DDSE) method through off-line learning and on-line matching. At the off-line learning stage, a linear regression equation is presented by clustering historical data from supervisory control and data acquisition (SCADA), which provides a guarantee for solving the over-learning problem of the existing DDSE methods;then a novel robust state estimation method that can be transformed into quadratic programming (QP) models is proposed to obtain the mapping relationship between the measurements and the state variables (MRBMS). The proposed QP models can well solve the problem of collinearity in historical data. Furthermore, the off-line learning stage is greatly accelerated from three aspects including reducing historical categories, constructing tree retrieval structure for known topologies, and using sensitivity analysis when solving QP models. At the on-line matching stage, by quickly matching the current snapshot with the historical ones, the corresponding MRBMS can be obtained, and then the estimation values of the state variables can be obtained. Simulations demonstrate that the proposed DDSE method has obvious advantages in terms of suppressing over-learning problems, dealing with collinearity problems, robustness, and computation efficiency. 展开更多
关键词 robust state estimation historical snapshot off-line learning on-line matching COLLINEARITY
原文传递
A mixed-integer linear programming approach for robust state estimation 被引量:3
17
作者 Yanbo CHEN Jin MA 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2014年第4期366-373,共8页
In this paper,a mixed integer linear programming(MILP)formulation for robust state estimation(RSE)is proposed.By using the exactly linearized measurement equations instead of the original nonlinear ones,the existingmi... In this paper,a mixed integer linear programming(MILP)formulation for robust state estimation(RSE)is proposed.By using the exactly linearized measurement equations instead of the original nonlinear ones,the existingmixed integer nonlinear programming formulation for RSE is converted to a MILP problem.The proposed approach not only guarantees to find the global optimum,but also does not have convergence problems.Simulation results on a rudimentary 3-bus system and several IEEE standard test systems fully illustrate that the proposed methodology is effective with high efficiency. 展开更多
关键词 state estimation robustNESS Leverage point Mathematical programming Mixed integer linear programming(MILP)
原文传递
An event-triggered approach to robust state estimation for wireless sensor networks 被引量:3
18
作者 Huabo Liu Haisheng Yu 《Journal of Control and Decision》 EI 2017年第4期263-275,共13页
Robust state estimation problem for wireless sensor networks consisting of multiple remote units and a fusion unit is investigated subject to a limitation on the communication rate.An analytical robust fusion estimato... Robust state estimation problem for wireless sensor networks consisting of multiple remote units and a fusion unit is investigated subject to a limitation on the communication rate.An analytical robust fusion estimator based on an event-triggered transmission approach is derived to reduce the network traffic congestion and save the energy consumption of the sensor units.Some conditions guaranteeing the uniformly bounded estimation errors of the robust fusion estimator are investigated.Numerical simulations are provided to show the effectiveness of the proposed approach. 展开更多
关键词 Sensor fusion wireless sensor network event-triggered robust state estimation Kalman filter
原文传递
非线性互联系统状态观测器设计方法研究
19
作者 孙延修 黎虹 《自动化仪表》 CAS 2023年第1期35-41,共7页
非线性互联系统广泛应用于各类工业生产中。随着科学技术的迅速发展,控制系统的复杂程度越来越高,同时各子系统之间的互联性也变得越来越强。因此,针对日益复杂的非线性互联系统进行研究,已成为一个非常重要的课题。针对非线性互联系统... 非线性互联系统广泛应用于各类工业生产中。随着科学技术的迅速发展,控制系统的复杂程度越来越高,同时各子系统之间的互联性也变得越来越强。因此,针对日益复杂的非线性互联系统进行研究,已成为一个非常重要的课题。针对非线性互联系统观测器的设计方法进行研究,通过设计状态观测器实现对互联系统中状态向量的鲁棒估计。首先,基于李雅普诺夫函数给出广义互联系统状态观测器存在的充分条件。其次,将非线性广义互联系统观测器的存在条件进行推广,得到正常非线性互联系统观测器存在的充分条件。观测器的存在条件均通过Schur补引理,以线性矩阵不等式的形式给出,简化了观测器增益矩阵的求解,得到了互联系统观测器的设计方法。最后,利用MATLAB软件计算出观测器的增益矩阵。两个算例仿真结果验证了所提方法的可行性与有效性。 展开更多
关键词 观测器 广义互联系统 线性矩阵不等式 增益矩阵 非线性 鲁棒估计 李雅普诺夫函数 状态估计
下载PDF
基于时域模型的电-气综合能源系统分布式鲁棒状态估计 被引量:2
20
作者 潘浩 卫志农 +3 位作者 黄蔓云 孙国强 陈胜 孙康 《电力系统自动化》 EI CSCD 北大核心 2023年第17期89-98,共10页
高效准确的状态估计(SE)技术是电-气综合能源系统(IEGS)安全稳定运行的关键。现有的IEGS-SE方法常采用有限元差分模型描述气网动态特性。该模型需引入冗余的时空微元,难以兼顾SE精度和计算复杂度。为此,提出一种基于时域模型的IEGS分布... 高效准确的状态估计(SE)技术是电-气综合能源系统(IEGS)安全稳定运行的关键。现有的IEGS-SE方法常采用有限元差分模型描述气网动态特性。该模型需引入冗余的时空微元,难以兼顾SE精度和计算复杂度。为此,提出一种基于时域模型的IEGS分布式鲁棒SE方法,在保证精度的前提下提升计算效率。首先,基于时域模型推导出以真实节点压强为状态量的气网状态空间模型,实现气网模型的简化和降维。在此基础上,以卡尔曼滤波算法为框架,提出有限边界信息交互的分布式IEGS-SE策略,以解决不同子系统多管理主体之间的信息壁垒问题。最后,利用噪声自适应算法准确跟踪时变噪声参数,提升所提方法的鲁棒性。仿真算例证明,所提方法在保护各子系统隐私的条件下,有效提高了SE精度,抑制了坏数据影响,且计算效率远高于传统有限元差分法。 展开更多
关键词 综合能源系统 状态估计 时域模型 分布式鲁棒方法
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部