The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribut...The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.展开更多
The experimental study on the melting of potassic basalt and eclogite with about 2% waterat 800-1300℃ and 1.0-3.5 GPa shows that the solidi of both rocks are significantly lower thanthose obtained from the previous e...The experimental study on the melting of potassic basalt and eclogite with about 2% waterat 800-1300℃ and 1.0-3.5 GPa shows that the solidi of both rocks are significantly lower thanthose obtained from the previous experiments of the same type of rocks under dry conditions,and the former which is enriched in potassium has a lower melting point than the latter. It is con-sistent with the previous study. The melting temperature of eclogite increases with pressure,whereas potassic basalt has similar properties only at 1.5—2.5 GPa and>3.0 GPa, and at 2.5—3.0 GPa the melting temperature decreases with pressure. This can be explained as follows: (1)eclogite only has one hydrous mineral amphibole and the dehydous temperature is lower than thewet solidus of the rock. (2) Amphibole exists in potassic basalt at the pressures lower than 2.5GPa and phlogopite exists at pressures higher than 2.5 GPa, and the special compositions of bothminerals determine that amphibole has a dehydration temperature higher than or close to that ofthe wet solidus of the rocks, while phlogopite has a dehydration temperature lower than that ofthe wet solidus. On the other hand the features of the continuous solidus in the experiment ofhydrous eclogite were produced by the fact that the dehydration temperature of its amphibolelower than or close to the melting temperature of the hydrous conditions. So the melting tempera-ture lowers at higher pressures. Therefore, the composition of the rocks in the lithosphere and thetypes of hydrous minerals and their stable P-T conditions are the important factors controllingthe solidi of rocks. It can quite well explain the partial melting of rocks and the origin of the lowvelocity zone in the deep lithosphere.展开更多
sing the natural limestone samples taken from the field with dimension of 500 mm×500 mm×1 000 mm, the D-D (dilatancy-diffusion) seismogeny pattern was modeled under the condition of water injection, which ob...sing the natural limestone samples taken from the field with dimension of 500 mm×500 mm×1 000 mm, the D-D (dilatancy-diffusion) seismogeny pattern was modeled under the condition of water injection, which observes the time-space evolutionary features about the relative physics fields of the loaded samples from deformation, formation of microcracks to the occurrence of main rupture. The results of observed apparent resistivity show: ① The process of the deformation from microcrack to main rupture on the loaded rock sample could be characterized by the precursory spatial-temporal changes in the observation of apparent resistivity; ② The precursory temporal changes of observation in apparent resistivity could be divided into several stages, and its spatial distribution shows the difference in different parts of the rock sample; ③ Before the main rupture of the rock sample the obvious ″tendency anomaly′ and ′short-term anomaly″ were observed, and some of them could be likely considered as the ″impending earthquake ″anomaly precursor of apparent resistivity. The changes and distribution features of apparent resistivity show that they are intrinsically related to the dilatancy phenomenon of the loaded rock sample. Finally, this paper discusses the mechanism of resistivity change of loaded rock sample theoretically.展开更多
It is observed that the parameter of seismic inhomogeneous degree (GL value) calculated from the earthquake catalog shows obvious abnormal changes prior to strong earthquakes, indicating the state change of local seis...It is observed that the parameter of seismic inhomogeneous degree (GL value) calculated from the earthquake catalog shows obvious abnormal changes prior to strong earthquakes, indicating the state change of local seismic activity. This paper focuses on the mechanism for the abnormal changes of the GL values based on the sequences of acoustic emission for three types of rock samples containing macro-asperity fracture; compressional en-echelon fracture and model-III shear fracture. The results show that for the three types of rock samples, there are continuous abnormal changes of GL value (>1) just before the non-elastic deformation occurs or during the process of nucleation prior to the instability. Based on the experimental results, it seems that the process of creep sliding and resistance-uniformization along fault zone is the possible mechanism for the abnormal changes of GL value before rock fractures.展开更多
In order to solve the problem of experimental research on the penetration process of projectile into anchored rock mass, we derived the essential similarity conditions for the physical simulation experi- ment accordin...In order to solve the problem of experimental research on the penetration process of projectile into anchored rock mass, we derived the essential similarity conditions for the physical simulation experi- ment according to the similarity theory, carried out the experiment on the penetration process of a kind of penetrating bomb into the anchored rock mass of type III, and compared the experimental results with the values computed by the professional Young's empirical formula. The test results show that the phys- ical simulation experiment can represent the actual penetration process of projectile into anchored rock mass. The research method proposed in this paper provides technical support for the experimental research on the design and reconstruction of underground protection works.展开更多
Based on the knowing geochemical characteristics of wall rock in the Mobin gold deposit and composition of fluid inclusion in ore,water rock experiments were carried out, important achievements are acquired as followi...Based on the knowing geochemical characteristics of wall rock in the Mobin gold deposit and composition of fluid inclusion in ore,water rock experiments were carried out, important achievements are acquired as following: Gold is mainly derived from the ore bearing wall rock,i.e., a series of epimetamorphic clastic gritstone, sandy slate, and tuffaceous slate in the Wuqiang Banxi Formation, Wuqiangxi Group. In thermal system with middle low temperature chlorine gold may be derived form stable complex ions, so it is quite important in gold metallogenic process. Sulphur and chlorine perform as the major negative ions throughout the gold activation and migration movement. The concentration of sulphur and chlorine ions, pH value and temperature are of deciding significance for gold activation, migration and precipitation.展开更多
The shale oil reservoir within the Yanchang Formations of Ordos Basin harbors substantial oil and gas resources and has recently emerged as the primary focus of unconventional oil and gas exploration and development.D...The shale oil reservoir within the Yanchang Formations of Ordos Basin harbors substantial oil and gas resources and has recently emerged as the primary focus of unconventional oil and gas exploration and development.Due to its complex pore and throat structure,pronounced heterogeneity,and tight reservoir characteristics,the techniques for conventional oil and gas exploration and production face challenges in comprehensive implementation,also indicating that as a vital parameter for evaluating the physical properties of a reservoir,permeability cannot be effectively estimated.This study selects 21 tight sandstone samples from the Q area within the shale oil formations of Ordos Basin.We systematically conduct the experiments to measure porosity,permeability,ultrasonic wave velocities,and resistivity at varying confining pressures.Results reveal that these measurements exhibit nonlinear changes in response to effective pressure.By using these experimental data and effective medium model,empirical relationships between P-and S-wave velocities,permeability and resistivity and effective pressure are established at logging and seismic scales.Furthermore,relationships between P-wave impedance and permeability,and resistivity and permeability are determined.A comparison between the predicted permeability and logging data demonstrates that the impedance–permeability relationship yields better results in contrast to those of resistivity–permeability relationship.These relationships are further applied to the seismic interpretation of shale oil reservoir in the target layer,enabling the permeability profile predictions based on inverse P-wave impedance.The predicted results are evaluated with actual production data,revealing a better agreement between predicted results and logging data and productivity.展开更多
文摘The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.
基金Note:This study was supported by China National Natural Science Foundation Grant No.49070087.
文摘The experimental study on the melting of potassic basalt and eclogite with about 2% waterat 800-1300℃ and 1.0-3.5 GPa shows that the solidi of both rocks are significantly lower thanthose obtained from the previous experiments of the same type of rocks under dry conditions,and the former which is enriched in potassium has a lower melting point than the latter. It is con-sistent with the previous study. The melting temperature of eclogite increases with pressure,whereas potassic basalt has similar properties only at 1.5—2.5 GPa and>3.0 GPa, and at 2.5—3.0 GPa the melting temperature decreases with pressure. This can be explained as follows: (1)eclogite only has one hydrous mineral amphibole and the dehydous temperature is lower than thewet solidus of the rock. (2) Amphibole exists in potassic basalt at the pressures lower than 2.5GPa and phlogopite exists at pressures higher than 2.5 GPa, and the special compositions of bothminerals determine that amphibole has a dehydration temperature higher than or close to that ofthe wet solidus of the rocks, while phlogopite has a dehydration temperature lower than that ofthe wet solidus. On the other hand the features of the continuous solidus in the experiment ofhydrous eclogite were produced by the fact that the dehydration temperature of its amphibolelower than or close to the melting temperature of the hydrous conditions. So the melting tempera-ture lowers at higher pressures. Therefore, the composition of the rocks in the lithosphere and thetypes of hydrous minerals and their stable P-T conditions are the important factors controllingthe solidi of rocks. It can quite well explain the partial melting of rocks and the origin of the lowvelocity zone in the deep lithosphere.
文摘sing the natural limestone samples taken from the field with dimension of 500 mm×500 mm×1 000 mm, the D-D (dilatancy-diffusion) seismogeny pattern was modeled under the condition of water injection, which observes the time-space evolutionary features about the relative physics fields of the loaded samples from deformation, formation of microcracks to the occurrence of main rupture. The results of observed apparent resistivity show: ① The process of the deformation from microcrack to main rupture on the loaded rock sample could be characterized by the precursory spatial-temporal changes in the observation of apparent resistivity; ② The precursory temporal changes of observation in apparent resistivity could be divided into several stages, and its spatial distribution shows the difference in different parts of the rock sample; ③ Before the main rupture of the rock sample the obvious ″tendency anomaly′ and ′short-term anomaly″ were observed, and some of them could be likely considered as the ″impending earthquake ″anomaly precursor of apparent resistivity. The changes and distribution features of apparent resistivity show that they are intrinsically related to the dilatancy phenomenon of the loaded rock sample. Finally, this paper discusses the mechanism of resistivity change of loaded rock sample theoretically.
文摘It is observed that the parameter of seismic inhomogeneous degree (GL value) calculated from the earthquake catalog shows obvious abnormal changes prior to strong earthquakes, indicating the state change of local seismic activity. This paper focuses on the mechanism for the abnormal changes of the GL values based on the sequences of acoustic emission for three types of rock samples containing macro-asperity fracture; compressional en-echelon fracture and model-III shear fracture. The results show that for the three types of rock samples, there are continuous abnormal changes of GL value (>1) just before the non-elastic deformation occurs or during the process of nucleation prior to the instability. Based on the experimental results, it seems that the process of creep sliding and resistance-uniformization along fault zone is the possible mechanism for the abnormal changes of GL value before rock fractures.
文摘In order to solve the problem of experimental research on the penetration process of projectile into anchored rock mass, we derived the essential similarity conditions for the physical simulation experi- ment according to the similarity theory, carried out the experiment on the penetration process of a kind of penetrating bomb into the anchored rock mass of type III, and compared the experimental results with the values computed by the professional Young's empirical formula. The test results show that the phys- ical simulation experiment can represent the actual penetration process of projectile into anchored rock mass. The research method proposed in this paper provides technical support for the experimental research on the design and reconstruction of underground protection works.
基金The Doctoral Foundation of the Education Ministry of China(970 53 0 1) The Natural Science Foundationof Hunan province (97JJ2 0 5)
文摘Based on the knowing geochemical characteristics of wall rock in the Mobin gold deposit and composition of fluid inclusion in ore,water rock experiments were carried out, important achievements are acquired as following: Gold is mainly derived from the ore bearing wall rock,i.e., a series of epimetamorphic clastic gritstone, sandy slate, and tuffaceous slate in the Wuqiang Banxi Formation, Wuqiangxi Group. In thermal system with middle low temperature chlorine gold may be derived form stable complex ions, so it is quite important in gold metallogenic process. Sulphur and chlorine perform as the major negative ions throughout the gold activation and migration movement. The concentration of sulphur and chlorine ions, pH value and temperature are of deciding significance for gold activation, migration and precipitation.
基金supports from the National Natural Science Foundation of China(42104110,41974123,42174161,and 12334019)the Natural Science Foundation of Jiangsu Province(BK20210379,BK20200021)+1 种基金the Postdoctoral Science Foundation of China(2022M720989)the Fundamental Research Funds for the Central Universities(B210201032).
文摘The shale oil reservoir within the Yanchang Formations of Ordos Basin harbors substantial oil and gas resources and has recently emerged as the primary focus of unconventional oil and gas exploration and development.Due to its complex pore and throat structure,pronounced heterogeneity,and tight reservoir characteristics,the techniques for conventional oil and gas exploration and production face challenges in comprehensive implementation,also indicating that as a vital parameter for evaluating the physical properties of a reservoir,permeability cannot be effectively estimated.This study selects 21 tight sandstone samples from the Q area within the shale oil formations of Ordos Basin.We systematically conduct the experiments to measure porosity,permeability,ultrasonic wave velocities,and resistivity at varying confining pressures.Results reveal that these measurements exhibit nonlinear changes in response to effective pressure.By using these experimental data and effective medium model,empirical relationships between P-and S-wave velocities,permeability and resistivity and effective pressure are established at logging and seismic scales.Furthermore,relationships between P-wave impedance and permeability,and resistivity and permeability are determined.A comparison between the predicted permeability and logging data demonstrates that the impedance–permeability relationship yields better results in contrast to those of resistivity–permeability relationship.These relationships are further applied to the seismic interpretation of shale oil reservoir in the target layer,enabling the permeability profile predictions based on inverse P-wave impedance.The predicted results are evaluated with actual production data,revealing a better agreement between predicted results and logging data and productivity.