Our study identifies a subtle deviation from Newton’s third law in the derivation of the ideal rocket equation, also known as the Tsiolkovsky Rocket Equation (TRE). TRE can be derived using a 1D elastic collision mod...Our study identifies a subtle deviation from Newton’s third law in the derivation of the ideal rocket equation, also known as the Tsiolkovsky Rocket Equation (TRE). TRE can be derived using a 1D elastic collision model of the momentum exchange between the differential propellant mass element (dm) and the rocket final mass (m1), in which dm initially travels forward to collide with m1 and rebounds to exit through the exhaust nozzle with a velocity that is known as the effective exhaust velocity ve. We observe that such a model does not explain how dm was able to acquire its initial forward velocity without the support of a reactive mass traveling in the opposite direction. We show instead that the initial kinetic energy of dm is generated from dm itself by a process of self-combustion and expansion. In our ideal rocket with a single particle dm confined inside a hollow tube with one closed end, we show that the process of self-combustion and expansion of dm will result in a pair of differential particles each with a mass dm/2, and each traveling away from one another along the tube axis, from the center of combustion. These two identical particles represent the active and reactive sub-components of dm, co-generated in compliance with Newton’s third law of equal action and reaction. Building on this model, we derive a linear momentum ODE of the system, the solution of which yields what we call the Revised Tsiolkovsky Rocket Equation (RTRE). We show that RTRE has a mathematical form that is similar to TRE, with the exception of the effective exhaust velocity (ve) term. The ve term in TRE is replaced in RTRE by the average of two distinct exhaust velocities that we refer to as fast-jet, vx<sub>1</sub>, and slow-jet, vx<sub>2</sub>. These two velocities correspond, respectively, to the velocities of the detonation pressure wave that is vectored directly towards the exhaust nozzle, and the retonation wave that is initially vectored in the direction of rocket propagation, but subsequently becomes reflected from the thrust surface of the combustion chamber to exit through the exhaust nozzle with a time lag behind the detonation wave. The detonation-retonation phenomenon is supported by experimental evidence in the published literature. Finally, we use a convolution model to simulate the composite exhaust pressure wave, highlighting the frequency spectrum of the pressure perturbations that are generated by the mutual interference between the fast-jet and slow-jet components. Our analysis offers insights into the origin of combustion oscillations in rocket engines, with possible extensions beyond rocket engineering into other fields of combustion engineering.展开更多
How to effectively evaluate the firing precision of weapon equipment at low cost is one of the core contents of improving the test level of weapon system.A new method to evaluate the firing precision of the MLRS consi...How to effectively evaluate the firing precision of weapon equipment at low cost is one of the core contents of improving the test level of weapon system.A new method to evaluate the firing precision of the MLRS considering the credibility of simulation system based on Bayesian theory is proposed in this paper.First of all,a comprehensive index system for the credibility of the simulation system of the firing precision of the MLRS is constructed combined with the group analytic hierarchy process.A modified method for determining the comprehensive weight of the index is established to improve the rationality of the index weight coefficients.The Bayesian posterior estimation formula of firing precision considering prior information is derived in the form of mixed prior distribution,and the rationality of prior information used in estimation model is discussed quantitatively.With the simulation tests,the different evaluation methods are compared to validate the effectiveness of the proposed method.Finally,the experimental results show that the effectiveness of estimation method for firing precision is improved by more than 25%.展开更多
BEIJING,March 12(Xinhua)——China′s development of both 4⁃meter⁃diameter and 5⁃meter⁃diameter reusable rockets is being accelerated,with their inaugural flights scheduled for 2025 and 2026,respectively.The manufactur...BEIJING,March 12(Xinhua)——China′s development of both 4⁃meter⁃diameter and 5⁃meter⁃diameter reusable rockets is being accelerated,with their inaugural flights scheduled for 2025 and 2026,respectively.The manufacturing of these two new large reusable launching vehicle models is a response to growing demand in the commercial space market,said the China Aerospace Science and Technology Corporation.展开更多
This study investigates the ablation of internal insulation induced by the deposition of an alumina film with different lateral film speeds.A sub-scale test solid rocket motor(SRM)was designed in an impinging jet conf...This study investigates the ablation of internal insulation induced by the deposition of an alumina film with different lateral film speeds.A sub-scale test solid rocket motor(SRM)was designed in an impinging jet configuration to form an alumina film on the sample and to encourage the lateral movement of the film by a high-speed wall jet.Fifteen static fire tests of the test SRM were conducted with six different jet velocities(V_(jet)=100 m/s,150 m/s,200 m/s,268 m/s,330 m/s,and 450 m/s)that indirectly affected the velocity of the wall jet and the deposition rate of alumina droplets.The ablation velocity was deduced from the difference in the sample thickness after a test using a coordinate measuring machine.The droplet deposition mass flux and wall jet velocity were obtained via two-phase flow simulation with the same jet velocity and effective pressure.As a result,the characteristics of alumina-induced ablation and the changes in ablation with jet velocities were obtained.The area within0.8×jet diameter was focused upon,where the ratio of ablation velocity to incoming alumina mass was constant for each jet velocity,and showed a similarity in jet structure.When the ablation velocity was increased from 2.05 to 9.98 mm/s with increasing jet velocity,the ratio of the ablation velocity and alumina mass flux decreased from 1.07×10^(-4)to 0.49×10^(-4)m^(3)/kg as Al_(2)O_(3)-C reactions became less efficient with a reduced residence time of the film.Because the decrease in residence time by the wall jet is more pronounced for slow reactions involved in Al_(2)O_(3)-C reactions,fast reactions in Al_(2)O_(3)-C reactions are less affected and result in a convergence of the volumetric rate of ablation per unit mass of alumina.展开更多
Since a thrust of an ion rocket engine is much weaker than the one of a chemical fuel engine, nowadays, ion engines are used mainly in spaces where gravities are very weak. Here, as a powerful plasma rocket to make a ...Since a thrust of an ion rocket engine is much weaker than the one of a chemical fuel engine, nowadays, ion engines are used mainly in spaces where gravities are very weak. Here, as a powerful plasma rocket to make a heavy ship get out from the gravity-sphere of the earth without relying on an atomic power rocket, an ion-velocity booster is investigated. It is a main challenge how to protect the engine wall from the melting due to collisions of ions which grow into high-energy particles.展开更多
Gravity-1 solid-propellant carrier rocket utilizes a three-vertical testing and launch mode, and adopts a sea-based launch method. As the demand for satellite launches continues to grow, the scarcity of launch site re...Gravity-1 solid-propellant carrier rocket utilizes a three-vertical testing and launch mode, and adopts a sea-based launch method. As the demand for satellite launches continues to grow, the scarcity of launch site resources,and the consideration of cost savings, the need for rapid testing and launch of carrier rockets has become increasingly strong. The capability of rapid testing and launch has even become one important aspect of evaluating a rocket. This paper focuses on the characteristics of the Gravity-1 solid-propellant strap-on medium-sized carrier rocket and designs and implements a highly reliable, convenient, and intelligent low-cost rapid testing and launch solution. The main aspects include the design of a highly reliable dual-redundant ground architecture and the application of ground-based shelf products.展开更多
Accurate navigation is important for long-range rocket projectile's precise striking. To obtain stable and high-per- formance navigation result, a ultra-tight global positioning system/inertial navigation system (GP...Accurate navigation is important for long-range rocket projectile's precise striking. To obtain stable and high-per- formance navigation result, a ultra-tight global positioning system/inertial navigation system (GPS/INS) integration based nav- igation approach is proposed. The accurate short-time output of INS is used by GPS receiver to assist in acquisition of signal, and output information of INS and GPS is fused based on federated filter. Meanwhile, the improved cubature Kalman filter with strong tracking ability is chosen to serve as the local filter, and then the federated filter is enhanced based on vector sharing theory. Finally, simulation results show that the navigation accuracy with the proposed method is higher than that with traditional methods. It provides reference for long-range rocket projectile navigation.展开更多
The active control theory and methods of initial disturbances for rockets and missiles are investigated. The rocket or missile/launcher is simplified as a flexible beam excited by a moving varying velocity rigid body ...The active control theory and methods of initial disturbances for rockets and missiles are investigated. The rocket or missile/launcher is simplified as a flexible beam excited by a moving varying velocity rigid body which has two points in contact with the beam. The control force is applied at the supporting point on the beam. Active control strategies based on optimal control theory are proposed and computer simulation is carried out. Simulation results are consistent with the theoretical results, and show that the active control strategies proposed can accomplish the purpose to control the initial disturbances actively. The results show that active control of initial disturbances for rockets and missiles is feasible for application.展开更多
A hybrid rocket motor combines components from both solid fuel and liquid fuel rocket motors. The fuel itself is a solid grain, (often paraffin or hydroxyl-terminated polybutadiene, known as HTPB) while the oxidizing ...A hybrid rocket motor combines components from both solid fuel and liquid fuel rocket motors. The fuel itself is a solid grain, (often paraffin or hydroxyl-terminated polybutadiene, known as HTPB) while the oxidizing agent is liquid (often hydrogen peroxide or liquid oxygen). These components are combined in the fuel chamber which doubles as the combustion chamber for the hybrid motor. This review looks at the advances in techniques that have taken place in the development of these motors since 1995. Methods of testing the thrust from rocket motors and of measuring the rocket plume spectroscopically for combustion reaction products have been developed. These assessments allow researchers to more completely understand the effects of additives and physical changes in design, in terms of regression rates and thrust developed. Hybrid rocket motors have been used or tested in many areas of rocketry, including tactical rockets and large launch vehicles. Several additives have shown significant improvements in regression rates and thrust, including Guanidinium azotetrazolate (GAT), and various Aluminum alloys. The most recent discoveries have come from research into nano-particle additives. The nano-particles have been shown to provide enhancements to many parameters of hybrid rocket function, and research into specific areas continues in the sub-field of nano-additives for fuel grains.展开更多
In order to measure the parameters of flight rocket by using radar,rocket impact point was estimated accurately for rocket trajectory correction.The Kalman filter with adaptive filter gain matrix was adopted.According...In order to measure the parameters of flight rocket by using radar,rocket impact point was estimated accurately for rocket trajectory correction.The Kalman filter with adaptive filter gain matrix was adopted.According to the particle trajectory model,the adaptive Kalman filter trajectory model was constructed for removing and filtering the outliers of the parameters during a section of flight detected by three-dimensional data radar and the rocket impact point was extrapolated.The results of numerical simulation show that the outliers and noise in trajectory measurement signal can be removed effectively by using the adaptive Kalman filter and the filter variance can converge in a short period of time.Based on the relation of filtering time and impact point estimation error,choosing the filtering time of 8-10 scan get the minimum estimation error of impact point.展开更多
Aim To describe a news system for measuring the and pitch angles of rocket during the launch phase Methods Optical system was to reflect the spot that represents the angular movement of rocket to the position sensitiv...Aim To describe a news system for measuring the and pitch angles of rocket during the launch phase Methods Optical system was to reflect the spot that represents the angular movement of rocket to the position sensitive detector that can convert analogue signal into digital one.Results Compared with conventional optical lever test system which had been applied to measure rocket attitude angle,the new system used the position sensitive detector to replace the screen and high-speed photographic instrumentation as grapher,which can avert photointerpretive data reduction and apply to field experiment more easily and pre- cisely .Conclusion Experimental results show that the test system can be used in measuring the yaw and pitch angles of rocket effectively.展开更多
An improved near far field divided coupled method was established to investigate the electromagnetic properties of mildly overexpanded and underexpanded rocket exhaust plumes. Firstly, axisymmetric Navier Stokes eq...An improved near far field divided coupled method was established to investigate the electromagnetic properties of mildly overexpanded and underexpanded rocket exhaust plumes. Firstly, axisymmetric Navier Stokes equations incorporated with k ε two equation turbulence models were solved using time dependent approach to calculate the pressure of the near filed. Secondly, parabolized axisymmetric Navier Stokes equations incorporated with finite rate chemical kinetics models were marching on the detailed pressure map of the near field. The termination of the near field would yield the initial line for the far field. In addition, in the far field, the spatial marching method was directly used under the constant pressure condition, but considering more complicated chemically reacting process. Finally, the electromagnetic parameters of the whole plume were calculated with the electron conductive model. The calculated results of the overexpanded and underexpanded rocket exhaust plume were discussed. The predicted microwave attenuation accorded with the experimental results. This improved method is feasible for calculating the microwave attenuation characteristics of mildly non fully expanded rocket exhaust plumes.展开更多
Describes a new computer program (Regress-3D) to simulate the regression of complex 3D grain cavity and calculate the burning surface area. It has a large region of applicability in solid rocket motor design and has...Describes a new computer program (Regress-3D) to simulate the regression of complex 3D grain cavity and calculate the burning surface area. It has a large region of applicability in solid rocket motor design and has made new improvements compared with other available codes. User can easily and rapidly build his initial grain shapes and then obtain geometric information of his design. Considering with the calclulting results, redesigning can be performed as desire until reaching at the satisfied result. Advantages and disadvantages of this method are also discussed.展开更多
Nose deflection control is a new concept of fast response control model.The partial nose of projectile deflects a certain angle relative to the axis of projectile body and then pressure difference emerges on the windw...Nose deflection control is a new concept of fast response control model.The partial nose of projectile deflects a certain angle relative to the axis of projectile body and then pressure difference emerges on the windward and leeward sides of warhead.Consequently,aerodynamic control force is generated.This control way has high control efficiency and very good application prospects in the ammunition system.Nose deflection actuator based on smart material and structure enables projectile body morphing to obtain additional aerodynamic force and moment,changes the aerodynamic characteristics in the projectile flight process,produces the corresponding balance angle and sideslip angle resulting in motor overload,adjusts flight moving posture to control the ballistics,finally changes shooting range and improves firing accuracy.In order to study characteristics of self-adaptive control projectile,numerical simulations are conducted by using fluid dynamics software ANSYS FLUENT for stabilized rocket projectile.The aerodynamic characteristics at different nose delectation angles,different Mach numbers and different angles of attack are obtained and compared.The results show that the nose deflection control has great influence on the head of rocket projectile,and it causes the asymmetry of the flow field structure and the increase of pressure differences of the warhead on the windward and leeward surface,which results in a larger lift.Finally,ballistics experiments are done for verification.The results can offer theoretical basis for self-adaptive rocket projectile design and optimization and also provide new ideas and methods for field smart ammunition research.展开更多
文摘Our study identifies a subtle deviation from Newton’s third law in the derivation of the ideal rocket equation, also known as the Tsiolkovsky Rocket Equation (TRE). TRE can be derived using a 1D elastic collision model of the momentum exchange between the differential propellant mass element (dm) and the rocket final mass (m1), in which dm initially travels forward to collide with m1 and rebounds to exit through the exhaust nozzle with a velocity that is known as the effective exhaust velocity ve. We observe that such a model does not explain how dm was able to acquire its initial forward velocity without the support of a reactive mass traveling in the opposite direction. We show instead that the initial kinetic energy of dm is generated from dm itself by a process of self-combustion and expansion. In our ideal rocket with a single particle dm confined inside a hollow tube with one closed end, we show that the process of self-combustion and expansion of dm will result in a pair of differential particles each with a mass dm/2, and each traveling away from one another along the tube axis, from the center of combustion. These two identical particles represent the active and reactive sub-components of dm, co-generated in compliance with Newton’s third law of equal action and reaction. Building on this model, we derive a linear momentum ODE of the system, the solution of which yields what we call the Revised Tsiolkovsky Rocket Equation (RTRE). We show that RTRE has a mathematical form that is similar to TRE, with the exception of the effective exhaust velocity (ve) term. The ve term in TRE is replaced in RTRE by the average of two distinct exhaust velocities that we refer to as fast-jet, vx<sub>1</sub>, and slow-jet, vx<sub>2</sub>. These two velocities correspond, respectively, to the velocities of the detonation pressure wave that is vectored directly towards the exhaust nozzle, and the retonation wave that is initially vectored in the direction of rocket propagation, but subsequently becomes reflected from the thrust surface of the combustion chamber to exit through the exhaust nozzle with a time lag behind the detonation wave. The detonation-retonation phenomenon is supported by experimental evidence in the published literature. Finally, we use a convolution model to simulate the composite exhaust pressure wave, highlighting the frequency spectrum of the pressure perturbations that are generated by the mutual interference between the fast-jet and slow-jet components. Our analysis offers insights into the origin of combustion oscillations in rocket engines, with possible extensions beyond rocket engineering into other fields of combustion engineering.
基金National Natural Science Foundation of China(Grant Nos.11972193 and 92266201)。
文摘How to effectively evaluate the firing precision of weapon equipment at low cost is one of the core contents of improving the test level of weapon system.A new method to evaluate the firing precision of the MLRS considering the credibility of simulation system based on Bayesian theory is proposed in this paper.First of all,a comprehensive index system for the credibility of the simulation system of the firing precision of the MLRS is constructed combined with the group analytic hierarchy process.A modified method for determining the comprehensive weight of the index is established to improve the rationality of the index weight coefficients.The Bayesian posterior estimation formula of firing precision considering prior information is derived in the form of mixed prior distribution,and the rationality of prior information used in estimation model is discussed quantitatively.With the simulation tests,the different evaluation methods are compared to validate the effectiveness of the proposed method.Finally,the experimental results show that the effectiveness of estimation method for firing precision is improved by more than 25%.
文摘BEIJING,March 12(Xinhua)——China′s development of both 4⁃meter⁃diameter and 5⁃meter⁃diameter reusable rockets is being accelerated,with their inaugural flights scheduled for 2025 and 2026,respectively.The manufacturing of these two new large reusable launching vehicle models is a response to growing demand in the commercial space market,said the China Aerospace Science and Technology Corporation.
文摘This study investigates the ablation of internal insulation induced by the deposition of an alumina film with different lateral film speeds.A sub-scale test solid rocket motor(SRM)was designed in an impinging jet configuration to form an alumina film on the sample and to encourage the lateral movement of the film by a high-speed wall jet.Fifteen static fire tests of the test SRM were conducted with six different jet velocities(V_(jet)=100 m/s,150 m/s,200 m/s,268 m/s,330 m/s,and 450 m/s)that indirectly affected the velocity of the wall jet and the deposition rate of alumina droplets.The ablation velocity was deduced from the difference in the sample thickness after a test using a coordinate measuring machine.The droplet deposition mass flux and wall jet velocity were obtained via two-phase flow simulation with the same jet velocity and effective pressure.As a result,the characteristics of alumina-induced ablation and the changes in ablation with jet velocities were obtained.The area within0.8×jet diameter was focused upon,where the ratio of ablation velocity to incoming alumina mass was constant for each jet velocity,and showed a similarity in jet structure.When the ablation velocity was increased from 2.05 to 9.98 mm/s with increasing jet velocity,the ratio of the ablation velocity and alumina mass flux decreased from 1.07×10^(-4)to 0.49×10^(-4)m^(3)/kg as Al_(2)O_(3)-C reactions became less efficient with a reduced residence time of the film.Because the decrease in residence time by the wall jet is more pronounced for slow reactions involved in Al_(2)O_(3)-C reactions,fast reactions in Al_(2)O_(3)-C reactions are less affected and result in a convergence of the volumetric rate of ablation per unit mass of alumina.
文摘Since a thrust of an ion rocket engine is much weaker than the one of a chemical fuel engine, nowadays, ion engines are used mainly in spaces where gravities are very weak. Here, as a powerful plasma rocket to make a heavy ship get out from the gravity-sphere of the earth without relying on an atomic power rocket, an ion-velocity booster is investigated. It is a main challenge how to protect the engine wall from the melting due to collisions of ions which grow into high-energy particles.
文摘Gravity-1 solid-propellant carrier rocket utilizes a three-vertical testing and launch mode, and adopts a sea-based launch method. As the demand for satellite launches continues to grow, the scarcity of launch site resources,and the consideration of cost savings, the need for rapid testing and launch of carrier rockets has become increasingly strong. The capability of rapid testing and launch has even become one important aspect of evaluating a rocket. This paper focuses on the characteristics of the Gravity-1 solid-propellant strap-on medium-sized carrier rocket and designs and implements a highly reliable, convenient, and intelligent low-cost rapid testing and launch solution. The main aspects include the design of a highly reliable dual-redundant ground architecture and the application of ground-based shelf products.
基金Project Funded by Chongqing Changjiang Electrical Appliances Industries Group Co.,Ltd
文摘Accurate navigation is important for long-range rocket projectile's precise striking. To obtain stable and high-per- formance navigation result, a ultra-tight global positioning system/inertial navigation system (GPS/INS) integration based nav- igation approach is proposed. The accurate short-time output of INS is used by GPS receiver to assist in acquisition of signal, and output information of INS and GPS is fused based on federated filter. Meanwhile, the improved cubature Kalman filter with strong tracking ability is chosen to serve as the local filter, and then the federated filter is enhanced based on vector sharing theory. Finally, simulation results show that the navigation accuracy with the proposed method is higher than that with traditional methods. It provides reference for long-range rocket projectile navigation.
文摘The active control theory and methods of initial disturbances for rockets and missiles are investigated. The rocket or missile/launcher is simplified as a flexible beam excited by a moving varying velocity rigid body which has two points in contact with the beam. The control force is applied at the supporting point on the beam. Active control strategies based on optimal control theory are proposed and computer simulation is carried out. Simulation results are consistent with the theoretical results, and show that the active control strategies proposed can accomplish the purpose to control the initial disturbances actively. The results show that active control of initial disturbances for rockets and missiles is feasible for application.
文摘A hybrid rocket motor combines components from both solid fuel and liquid fuel rocket motors. The fuel itself is a solid grain, (often paraffin or hydroxyl-terminated polybutadiene, known as HTPB) while the oxidizing agent is liquid (often hydrogen peroxide or liquid oxygen). These components are combined in the fuel chamber which doubles as the combustion chamber for the hybrid motor. This review looks at the advances in techniques that have taken place in the development of these motors since 1995. Methods of testing the thrust from rocket motors and of measuring the rocket plume spectroscopically for combustion reaction products have been developed. These assessments allow researchers to more completely understand the effects of additives and physical changes in design, in terms of regression rates and thrust developed. Hybrid rocket motors have been used or tested in many areas of rocketry, including tactical rockets and large launch vehicles. Several additives have shown significant improvements in regression rates and thrust, including Guanidinium azotetrazolate (GAT), and various Aluminum alloys. The most recent discoveries have come from research into nano-particle additives. The nano-particles have been shown to provide enhancements to many parameters of hybrid rocket function, and research into specific areas continues in the sub-field of nano-additives for fuel grains.
文摘In order to measure the parameters of flight rocket by using radar,rocket impact point was estimated accurately for rocket trajectory correction.The Kalman filter with adaptive filter gain matrix was adopted.According to the particle trajectory model,the adaptive Kalman filter trajectory model was constructed for removing and filtering the outliers of the parameters during a section of flight detected by three-dimensional data radar and the rocket impact point was extrapolated.The results of numerical simulation show that the outliers and noise in trajectory measurement signal can be removed effectively by using the adaptive Kalman filter and the filter variance can converge in a short period of time.Based on the relation of filtering time and impact point estimation error,choosing the filtering time of 8-10 scan get the minimum estimation error of impact point.
文摘Aim To describe a news system for measuring the and pitch angles of rocket during the launch phase Methods Optical system was to reflect the spot that represents the angular movement of rocket to the position sensitive detector that can convert analogue signal into digital one.Results Compared with conventional optical lever test system which had been applied to measure rocket attitude angle,the new system used the position sensitive detector to replace the screen and high-speed photographic instrumentation as grapher,which can avert photointerpretive data reduction and apply to field experiment more easily and pre- cisely .Conclusion Experimental results show that the test system can be used in measuring the yaw and pitch angles of rocket effectively.
文摘An improved near far field divided coupled method was established to investigate the electromagnetic properties of mildly overexpanded and underexpanded rocket exhaust plumes. Firstly, axisymmetric Navier Stokes equations incorporated with k ε two equation turbulence models were solved using time dependent approach to calculate the pressure of the near filed. Secondly, parabolized axisymmetric Navier Stokes equations incorporated with finite rate chemical kinetics models were marching on the detailed pressure map of the near field. The termination of the near field would yield the initial line for the far field. In addition, in the far field, the spatial marching method was directly used under the constant pressure condition, but considering more complicated chemically reacting process. Finally, the electromagnetic parameters of the whole plume were calculated with the electron conductive model. The calculated results of the overexpanded and underexpanded rocket exhaust plume were discussed. The predicted microwave attenuation accorded with the experimental results. This improved method is feasible for calculating the microwave attenuation characteristics of mildly non fully expanded rocket exhaust plumes.
文摘Describes a new computer program (Regress-3D) to simulate the regression of complex 3D grain cavity and calculate the burning surface area. It has a large region of applicability in solid rocket motor design and has made new improvements compared with other available codes. User can easily and rapidly build his initial grain shapes and then obtain geometric information of his design. Considering with the calclulting results, redesigning can be performed as desire until reaching at the satisfied result. Advantages and disadvantages of this method are also discussed.
文摘Nose deflection control is a new concept of fast response control model.The partial nose of projectile deflects a certain angle relative to the axis of projectile body and then pressure difference emerges on the windward and leeward sides of warhead.Consequently,aerodynamic control force is generated.This control way has high control efficiency and very good application prospects in the ammunition system.Nose deflection actuator based on smart material and structure enables projectile body morphing to obtain additional aerodynamic force and moment,changes the aerodynamic characteristics in the projectile flight process,produces the corresponding balance angle and sideslip angle resulting in motor overload,adjusts flight moving posture to control the ballistics,finally changes shooting range and improves firing accuracy.In order to study characteristics of self-adaptive control projectile,numerical simulations are conducted by using fluid dynamics software ANSYS FLUENT for stabilized rocket projectile.The aerodynamic characteristics at different nose delectation angles,different Mach numbers and different angles of attack are obtained and compared.The results show that the nose deflection control has great influence on the head of rocket projectile,and it causes the asymmetry of the flow field structure and the increase of pressure differences of the warhead on the windward and leeward surface,which results in a larger lift.Finally,ballistics experiments are done for verification.The results can offer theoretical basis for self-adaptive rocket projectile design and optimization and also provide new ideas and methods for field smart ammunition research.