Organic room-temperature phosphorescence(RTP)materials have garnered considerable attention in the fields of biosensing,optoelectronic devices,and anticounterfeiting because of their substantial Stokes shifts,tunable ...Organic room-temperature phosphorescence(RTP)materials have garnered considerable attention in the fields of biosensing,optoelectronic devices,and anticounterfeiting because of their substantial Stokes shifts,tunable emission wavelengths,and prolonged lifetimes.These materials offer remarkable advantages for biological imaging applications by effectively reducing environmental autofluorescence and enhancing imaging resolution.Recently,host-guest systems have been employed as efficient approaches to fabricate pure-organic RTP materials for bioimaging,providing benefits such as controllable preparation and flexible modulation.Consequently,an increasing number of corresponding studies are being reported;however,a comprehensive systematic review is still lacking.Therefore,we summarize recent advances in the development of pureorganic RTP materials using host-guest systems with regard to bioimaging,including rigid matrices and sensitization.The challenge and potential of RTP for biological imaging are also proposed to promote the biomedical applications of organic RTP materials with excellent optical properties.展开更多
Amber can emit room temperature phosphorescence(RTP)under the well-known 365 nm fluorescence ultraviolet light.This paper is devoted to the phosphorescence study of 20 pieces of amber materials from the Dominican Repu...Amber can emit room temperature phosphorescence(RTP)under the well-known 365 nm fluorescence ultraviolet light.This paper is devoted to the phosphorescence study of 20 pieces of amber materials from the Dominican Republic,Mexico,Baltic sea,Myanmar,and Fushun,China.The results show that amber from the same geographic origin has similar shape in phosphorescence spectra.However,the shape of the amber phosphorescence spectra varies depending on their different localities.Burmite(amber from Myanmar)and Fushun amber have a bright yellow phosphorescence with a long lifetime,while the Dominican and Mexican ones are weaker and last shorter.The irradiation of Baltic amber becomes faint or even inert.Phosphorescence spectral Gaussian fitting results suggest an emission maximum near 550 nm in most amber samples.Their phosphorescence lifetime,analyzed through the exponential function fitting,is up to 1 second in Burmite and Fushun samples,shorter in the Dominican and Mexican ones,about 0.230 s,and the shortest in Baltic amber,close to 0.151 s.These variations of phosphorescence lifetime and intensity are related to the relative geological ages of these amber.It indicated that the phosphorescence agent was probably formed during the long geological time.While the anomaly occurred in Baltic amber,the only one found in a sea secondary deposit form,it demonstrated that the terrestrial geological environment these amber preserved has prevented the phosphorescence agent to be deactivated.展开更多
[Objective] The paper was to compare the quality of apple vinegars prepared by different methods and screen an optimum brewing method for apple vinegar production. [Methed] The quality of apple vinegar brewed by three...[Objective] The paper was to compare the quality of apple vinegars prepared by different methods and screen an optimum brewing method for apple vinegar production. [Methed] The quality of apple vinegar brewed by three traditional brewing methods and a new method developed by our previous work was analyzed. Three traditional methods were solid state fermentation (SSF), liquid state fermentation (LSF) and immobilized microorganism fermentation (IMF), and the new method was multi-microorganisms co-immobilization technology(MMCT), which used co-immobilized beads of ethanol-producing yeast, aroma-improving yeast and lactic acid bacteria (with a ratio of 6:3:1) for alcoholic fermentation and then used immobilized acetic acid bacteria for vinegar fermentation. [Result] The general quality of apple vinegar brewed by MMCT was superior to the others. Its total acidity reached to 3.845 g/100 ml, unvolatile acidity was about 0.600 g/100 ml, amino-nitrogen was higher than 0.510 g/100 ml, and the composing of flavor compounds was almost similar to that of SSF brewed apple vinegar. [Conclusion] The MMCT method was proven to be the optimum one for high quality apple vinegar brewing and might be widely used in the future.展开更多
La0.5Sm0.2Sr0.3MnO3/(Ag2O)x/2 (x = 0.00, 0.04, 0.08, 0.25, 0.30) samples were prepared by the solid-state reaction method, and their transport behaviors, transport mechanism, and magnetoresistance effect were stud...La0.5Sm0.2Sr0.3MnO3/(Ag2O)x/2 (x = 0.00, 0.04, 0.08, 0.25, 0.30) samples were prepared by the solid-state reaction method, and their transport behaviors, transport mechanism, and magnetoresistance effect were studied through the measurement and fitting of p-T curves. The results show that the element Ag takes part in reaction when the doping amount is small. Ag is mainly distributed at the grain boundary of the host material and is in metallic state when the doping amount is relatively large; then the system becomes a two-phase composite. A small amount of Ag doping can apparently increase grain-boundary magnetoresistance induced by the spin-dependent scattering. The resistivity of the sample doped with 30 mol% Ag is one order of magnitude smaller than that of low-doped samples, and its magnetoresistance in the magnetic field of 0.5 T and at 300 K is strengthened apparently reaching 9.4%, which is connected not only with the improvement of the grain-boundary structure of the host material but also with the decrease of material resistivity.展开更多
Low-temperature assembly of MXene nanosheets into three-dimensional(3D) robust aerogels addresses the crucial stability concern of the nano-building blocks during the fabrication process,which is of key importance for...Low-temperature assembly of MXene nanosheets into three-dimensional(3D) robust aerogels addresses the crucial stability concern of the nano-building blocks during the fabrication process,which is of key importance for transforming the fascinating properties at the nanoscale into the macroscopic scale for practical applications.Herein,suitable cross-linking agents(amino-propyltriethoxysilane,Mn^(2+),Fe^(2+),Zn^(2+),and Co^(2+)) as interfacial mediators to engineer the interlayer interactions are reported to realize the graphene oxide(GO)-assisted assembly of Ti_(3)C_(2)T_(x) MXene aerogel at room temperature.This elaborate aerogel construction not only suppresses the oxidation degradation of Ti_(3)C_(2)T_(x) but also generates porous aerogels with a high Ti_(3)C_(2)T_(x) content(87 wt%) and robustness,thereby guaranteeing the functional accessibility of Ti_(3)C_(2)T_(x) nanosheets and operational reliability as integrated functional materials.In combination with a further sulfur modification,the Ti_(3)C_(2)T_(x) aerogel electrode shows promising electrochemical performances as the freestanding anode for sodium-ion storage.Even at an ultrahigh loading mass of 12.3 mg cm^(-2),a pronounced areal capacity of 1.26 mAh cm^(-2) at a current density of 0.1 A g^(-1) has been achieved,which is of practical significance.This work conceptually suggests a new way to exert the utmost surface functionalities of MXenes in 3D monolithic form and can be an inspiring scaffold to promote the application of MXenes in different areas.展开更多
Synthesis and applications of three-dimensional(3 D)porous graphene frameworks(GFs)have attracted extensive interest owing to their intriguing advantages of high specific surface area,enriched porosity,excellent elect...Synthesis and applications of three-dimensional(3 D)porous graphene frameworks(GFs)have attracted extensive interest owing to their intriguing advantages of high specific surface area,enriched porosity,excellent electrical conductivity,exceptional compressibility and processability.However,it is still challenging for economically viable,fast and scalable assembly of 3 D GFs at room-temperature.Herein,we reported a one-step scalable strategy for fast self-assembly of graphene oxide into 3 D macroscopically porous GFs,with assistance of polyoxometalates(POM)as functional cross-linker and hydrazine hydrate as reductant at room-temperature.The resulting 3 D interconnected macroporous POM-GFs uniformly decorated with ultrasmall POM nanoclusters were directly processed into binder-/additive-free film compact electrodes(1.68 g cm^(-3))with highly aligned,layer-stacked structure and electrically conductivity(622 S m-1)for high-performance supercapacitors,showing an impressive gravimetric capacitance of205 F g-1,volumetric capacitance of 334 F cm^(-3) at 1 mV s^(-1),and remarkable cycling stability with capacitance retention of 83%after 10,000 cycles,outperforming the most reported GFs.Further,the solid-state supercapacitors offered excellent gravimetric capacitance of 157 F g-1 exceptionally volumetric capacitance of 115 F cm^(-3) at 2 mV s^(-1) based on single electrode,and volumetric energy density of2.6 mWh cm^(-3).Therefore,this work will open novel opportunities to room-temperature fast assembly of 3 D porous graphene architectures for high-energy-density supercapacitors.展开更多
Benzoin condensation promoted efficiently in three imidazolium based room tempera- ture ionic liquids [bmim]Br, [bmim]BF4 and [Bnmim]BF4 is reported for the first time. Benzoins were obtained in up to 91% yield within...Benzoin condensation promoted efficiently in three imidazolium based room tempera- ture ionic liquids [bmim]Br, [bmim]BF4 and [Bnmim]BF4 is reported for the first time. Benzoins were obtained in up to 91% yield within less than 30 min under mild conditions.展开更多
This work reports influence of two different electrolytes,carbonate ester and ether electrolytes,on the sulfur redox reactions in room-temperature Na-S batteries.Two sulfur cathodes with different S loading ratio and ...This work reports influence of two different electrolytes,carbonate ester and ether electrolytes,on the sulfur redox reactions in room-temperature Na-S batteries.Two sulfur cathodes with different S loading ratio and status are investigated.A sulfur-rich composite with most sulfur dispersed on the surface of a carbon host can realize a high loading ratio(72%S).In contrast,a confined sulfur sample can encapsulate S into the pores of the carbon host with a low loading ratio(44%S).In carbonate ester electrolyte,only the sulfur trapped in porous structures is active via‘solid-solid’behavior during cycling.The S cathode with high surface sulfur shows poor reversible capacity because of the severe side reactions between the surface polysulfides and the carbonate ester solvents.To improve the capacity of the sulfur-rich cathode,ether electrolyte with NaNO_(3) additive is explored to realize a‘solid-liquid’sulfur redox process and confine the shuttle effect of the dissolved polysulfides.As a result,the sulfur-rich cathode achieved high reversible capacity(483 mAh g^(−1)),corresponding to a specific energy of 362 Wh kg^(−1) after 200 cycles,shedding light on the use of ether electrolyte for high-loading sulfur cathode.展开更多
A novel green nanophosphor CaHPO4:Tb3+ was synthesized via a room-temperatureco-precipitation route driven by ethanol solvent. X-ray powder diffraction (XRD), scanningelectron microscopy (SEM) and photoluminesce...A novel green nanophosphor CaHPO4:Tb3+ was synthesized via a room-temperatureco-precipitation route driven by ethanol solvent. X-ray powder diffraction (XRD), scanningelectron microscopy (SEM) and photoluminescence spectroscopy (PL) techniques were utilizedto characterize the structure, morphology and fluorescence performance of the obtained powders.The results demonstrated that the prepared samples were well crystallized with triclinic phaseCaHPO4 structure and particle-like morphology. Photoluminescence measurements indicated thatCaHPOa:Tb3+ had a strong absorption peak at 370 nm and exhibited characteristic emissions withseveral sharp peaks corresponding to the transitions 5D4-7FJ (jr = 6-3) of Tb3+. Moreover, theluminescence optimum concentration for CaHPO4:Tb3+ was determined to be 11 mol%, whichmight be a promising green-emitting ohosohor for display applications.展开更多
[Objective] The aim was to study the brewing technology of apple brandy. [Method] After the activated wine yeast was added to the apple juice by sizing classification, rinsing, falling to pieces and squeezing, the pre...[Objective] The aim was to study the brewing technology of apple brandy. [Method] After the activated wine yeast was added to the apple juice by sizing classification, rinsing, falling to pieces and squeezing, the preceding fermentation began. Every other day, parameters of fer- mentation broth such as temperature, pH, acidity, sugar content and bubble nurdbers were detected. Once the sugar content of the fermentation suspension was approaching 5 -6 °Bx, the following fermentation would start via pouring wine. After 20 -30 days, the cider was changed into origi- nal apple brandy by distillation. The last procedure was aging which included man-made speediness aging and oak wood aging about 20 days. The physical and chemical compositions before and after aging were measured. [ Result] 22.5 kg apple resulted into 16.56 L of juice. The juice yield was about 73.6% (10 ml/kg). The alcohol rate of distilled apple juice was 20.0%. The color of apple brandy was darker than that of original apple brandy. Alcohol level reduced, but total acidity, fixed acid, lipid and furfural content rose. [ Conclusion] The apple brandy was of particular flavor and high quality by selecting befitting fruit, activated wine yeast and feasible brewing, distillation and aging technology. It will be conductive to the development of apple processing industry and the research and development of key brandy technique.展开更多
The catalytic conversion of ethane to high value-added chemicals is significantly important for utilization of hydrocarbon resources.However, it is a great challenge due to the typically required high temperature(>...The catalytic conversion of ethane to high value-added chemicals is significantly important for utilization of hydrocarbon resources.However, it is a great challenge due to the typically required high temperature(> 400 ℃) conditions.Herein, a highly active catalytic conversion process of ethane at room temperature(25 ℃) is reported on single iron atoms confined in graphene via the porphyrin-like N4-coordination structures.Combining with the operando time of flight mass spectrometer and density functional theory calculations, the reaction is identified as a radical mechanism, in which the C–H bonds of the same C atom are preferentially and sequentially activated, generating the value-added C2 chemicals, simultaneously avoiding the over-oxidation of the products to CO2.The in-situ formed O–FeN4–O structure at the single iron atom serves as the active center for the reaction and facilitates the formation of ethyl radicals.This work deepens the understanding of alkane C–H activation on the FeN4 center and provides the reference in development of efficient catalyst for selective oxidation of light alkane.展开更多
To clarify the contribution of oxygen vacancies to room-temperature ferromagnetism(RTFM)in cobalt doped TiO_(2)(Co-TiO_(2)),and in order to obtain the high level of magnetization suitable for spintronic devices,in thi...To clarify the contribution of oxygen vacancies to room-temperature ferromagnetism(RTFM)in cobalt doped TiO_(2)(Co-TiO_(2)),and in order to obtain the high level of magnetization suitable for spintronic devices,in this work,Co-TiO_(2) nano-particles are prepared via the sol-gel route,followed by vacuum annealing for different durations,and the influence of vacu-um annealing duration on the structure and room-temperature magnetism of the compounds is examined.The results reveal that with an increase in annealing duration,the concentration of oxygen vacancies rises steadily,while the saturation magnetiza-tion(Ms)shows an initial gradual increase,followed by a sharp decline,and even disappearance.The maximum Ms is as high as 1.19 emu/g,which is promising with respect to the development of spintronic devices.Further analysis reveals that oxygen va-cancies,modulated by annealing duration,play a critical role in tuning room-temperature magnetism.An appropriate concentra-tion of oxygen vacancies is beneficial in terms of promoting RTFM in Co-TiO_(2).However,excessive oxygen vacancies will result in a negative impact on RTFM,due to antiferromagnetic superexchange interactions originating from nearest-neighbor Co^(2+)ions.展开更多
The properties of saccharified and boiled worts between extruded and traditional non-extruded beer adjuncts were studied at the laboratory and a small beer brewing equipment(100 L) in this paper. Test results indicate...The properties of saccharified and boiled worts between extruded and traditional non-extruded beer adjuncts were studied at the laboratory and a small beer brewing equipment(100 L) in this paper. Test results indicate that the main saccharification indices and filtration speeds of worts between extruded and traditional non-extruded beer adjuncts are similar basically. The collected rate of extracted material of worts of extruded beer adjuncts is 8% more than that of traditional non-extruded beer adjuncts. Fermentation time of worts of extruded beer adjuncts is 10 % less than that of traditional non-extruded beer adjuncts. The energy consumption of extruded beer adjuncts in saccharification process is 13 % less than that of traditional non-extruded beer adjuncts.展开更多
The rising cost of energy and environmental concerns have led the brewing industry to search for techniques of reducing energy consumption in brewery operations. In this paper, pinch analysis was applied to a typical ...The rising cost of energy and environmental concerns have led the brewing industry to search for techniques of reducing energy consumption in brewery operations. In this paper, pinch analysis was applied to a typical Ugandan based brewery process to target for the energy requirements of the process. Hint software was used for the analysis. At the chosen ΔTmin of 10℃, the minimum cooling and heating utility requirements of the brewery studied were determined as being 4862.21 kW and 8294.21 kW respectively, with a pinch temperature at 68℃. It was observed that using the technique, 1806.59 kW of energy could be recovered through process to process heat exchange which presented an energy saving potential of 21.5%. It is recommended that results from this study could be used in the design or retrofit of a heat exchanger network of a brewery for improved energy efficiency. Considerations can also be made for other values of ΔTmin.展开更多
The brewing characteristics of three kinds of beer yeasts commonly used in the market were compared and studied.The results showed that the three kinds of yeasts had different characteristics and slightly different fe...The brewing characteristics of three kinds of beer yeasts commonly used in the market were compared and studied.The results showed that the three kinds of yeasts had different characteristics and slightly different fermentation degrees,but the fermentation speeds all were higher and the diacetyl reduction ability was excellent.The finished beers were golden yellow in appearance,rich and delicate in foam,pleasant in aroma,mellow in body and similar in physicochemical indexes,all in line with domestic beer standards.展开更多
Two-dimensional (2D) ferromagnetic semiconductors have been recognized as the most promising candidates for next-generation low-cost, high-performance and nano-scale spintronic applications such as spin field-effect t...Two-dimensional (2D) ferromagnetic semiconductors have been recognized as the most promising candidates for next-generation low-cost, high-performance and nano-scale spintronic applications such as spin field-effect transistors and quantum computation/communication. However, as one of the 125 important scientific issues raised by Science journal in 2005 that "is it possible to create magnetic semiconductors that work at room temperature?", how to achieve a feasible ferromagnetic semiconductor with high Curie temperature is still a long-standing challenge despite of tremendous efforts have been devoted in this field since 1960s. The recent discovery of 2D ferromagnetic semiconductors Cr2Ge2Te6 and CrI3 has evoked new research interests in 2D intrinsic ferromagnetic semiconductors. But the low Curie temperature (<45 K) of these materials is still badly hindering their industrial applications.展开更多
A Fe-containing mesoporous silica has been synthesized at room temperature using alkylamine as templating surfactant; XRD, IR, ESR and Si-29 MAS NMR spectra provided evidence of the presence of framework and non-frame...A Fe-containing mesoporous silica has been synthesized at room temperature using alkylamine as templating surfactant; XRD, IR, ESR and Si-29 MAS NMR spectra provided evidence of the presence of framework and non-framework iron(III) in Fe-HMS material.展开更多
TiO2 nano powders with Mn concentration of 0 at%-12 at% were synthesized by the sol-gel process, and were annealed at 500 ℃ and 800 ℃ in air for 2 hrs. X-ray diffraction (XRD) measurements indicate that the Mn-TiO...TiO2 nano powders with Mn concentration of 0 at%-12 at% were synthesized by the sol-gel process, and were annealed at 500 ℃ and 800 ℃ in air for 2 hrs. X-ray diffraction (XRD) measurements indicate that the Mn-TiO2 nano powders with Mn concentration of 1 at% and 2 at% annealed at 500 and 800 ℃ are of pure anatase and rutile, respectively. The scanning electron microscope (SEM) observations reveal that the crystal grain size increases with the annealing temperature, and the high resolution transmission electron microscopy (HRTEM) investigations further indicate that the samples are well crystallized, confirming that Mn has doped into the TiO2 crystal lattice effectively. The room temperature ferromagnetism, which could be explained within the scope of the bound magnetic polaron (BMP) theory, is detected in the Mn-TiO2 samples with Mn concentration of 2 at%, and the magnetization of the powders annealed at 500 ℃ is stronger than that of the sample treated at 800 ℃. The UV-VIS diffuse reflectance spectra results demonstrate that the absorption of the TiO2 powders could be enlarged by the enhanced trapped electron absorption caused by Mn doping.展开更多
Long-term room-temperature annealing effects of InGaAs/InP quantum wells with different wells (namely triple wells and five wells embedded) and bulk InCaAs are investigated after high energy electron irradiation. It...Long-term room-temperature annealing effects of InGaAs/InP quantum wells with different wells (namely triple wells and five wells embedded) and bulk InCaAs are investigated after high energy electron irradiation. It is observed that the photoluminescence (PL) intensity of bulk InGaAs materials is enhanced after low dose electron irradiation and the PL intensity for all the three samples is degraded dramatically when the electron dose is relatively high. With respect to the room-temperature annealing, we find that the PL intensity for both samples recovers relatively fast at the initial stage. The PL performance of multiple quantum-well samples shows better recovery after irradiation compared with the results of bulk InGaAs materials. Meanwhile, the recovery speed factors of multiple quantum-well samples are relatively faster than those of the bulk InGaAs materials as well. We infer that the recovery difference between the quantum-well materials and bulk materials originates from the fact that the radiation induced defects are confined in the quantum wells as a consequence of the free energy barrier between the In0.53Ga0.47 As wells and InP barrier layers.展开更多
[Objective] The aim was to to enhance the technology to brew better the traditional grape wine, which provided theoretical basis for the development of Wuling Mountain grape wine. [Method] Taking grapes in Wuling Moun...[Objective] The aim was to to enhance the technology to brew better the traditional grape wine, which provided theoretical basis for the development of Wuling Mountain grape wine. [Method] Taking grapes in Wuling Mountain as the row materials, Saccharomyces cerevisiae of different wines was chosen and brewed. The quality of grape wine was studied and the sensory evaluation was analyzed by dint of GC-MS. [Result] Result illustrated that the ethanol concentration of the wine brewed by exploration craft A was 68.5 g/L and that brewed by exploration craft B was 59.5 g/L; the higher alcohol content of craft A was 37.86% while that of craft B is 35.99%; craft A's percentage content of esters was 28.82% while that of B was 27.10%; craft A's percentage content of acids was 2.20% while that of B was 1.24%; the gamma-aminobutyric acid content of craft A was 33.2 g/100 ml while that of craft B was 35.4 g/100 ml. the essential amino-acid content of craft A was 11.8 g/100 ml while that of craft B was 13.9 g/100 ml .The result indicates that the wine brewed by craft A was aromatic and had special flavor. [Conclusion] In this case, the grape wine has particular flavor and has good property, which can be exploited.展开更多
基金the financial support from the National Natural Science Foundation of China (Nos. 22125803, 22020102006 and 22307036)a project supported by the Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX03)+2 种基金the Program of Shanghai Academic/Technology Research Leader (No. 20XD1421300)China Postdoctoral Science Foundation (No. 2023M731079)the Fundamental Research Funds for the Central Universities
文摘Organic room-temperature phosphorescence(RTP)materials have garnered considerable attention in the fields of biosensing,optoelectronic devices,and anticounterfeiting because of their substantial Stokes shifts,tunable emission wavelengths,and prolonged lifetimes.These materials offer remarkable advantages for biological imaging applications by effectively reducing environmental autofluorescence and enhancing imaging resolution.Recently,host-guest systems have been employed as efficient approaches to fabricate pure-organic RTP materials for bioimaging,providing benefits such as controllable preparation and flexible modulation.Consequently,an increasing number of corresponding studies are being reported;however,a comprehensive systematic review is still lacking.Therefore,we summarize recent advances in the development of pureorganic RTP materials using host-guest systems with regard to bioimaging,including rigid matrices and sensitization.The challenge and potential of RTP for biological imaging are also proposed to promote the biomedical applications of organic RTP materials with excellent optical properties.
基金the financial support from the National Key R&D Program of China(2018YFF0215400)grants from the Gemmological Institute of the China University of Geosciences in Wuhan。
文摘Amber can emit room temperature phosphorescence(RTP)under the well-known 365 nm fluorescence ultraviolet light.This paper is devoted to the phosphorescence study of 20 pieces of amber materials from the Dominican Republic,Mexico,Baltic sea,Myanmar,and Fushun,China.The results show that amber from the same geographic origin has similar shape in phosphorescence spectra.However,the shape of the amber phosphorescence spectra varies depending on their different localities.Burmite(amber from Myanmar)and Fushun amber have a bright yellow phosphorescence with a long lifetime,while the Dominican and Mexican ones are weaker and last shorter.The irradiation of Baltic amber becomes faint or even inert.Phosphorescence spectral Gaussian fitting results suggest an emission maximum near 550 nm in most amber samples.Their phosphorescence lifetime,analyzed through the exponential function fitting,is up to 1 second in Burmite and Fushun samples,shorter in the Dominican and Mexican ones,about 0.230 s,and the shortest in Baltic amber,close to 0.151 s.These variations of phosphorescence lifetime and intensity are related to the relative geological ages of these amber.It indicated that the phosphorescence agent was probably formed during the long geological time.While the anomaly occurred in Baltic amber,the only one found in a sea secondary deposit form,it demonstrated that the terrestrial geological environment these amber preserved has prevented the phosphorescence agent to be deactivated.
文摘[Objective] The paper was to compare the quality of apple vinegars prepared by different methods and screen an optimum brewing method for apple vinegar production. [Methed] The quality of apple vinegar brewed by three traditional brewing methods and a new method developed by our previous work was analyzed. Three traditional methods were solid state fermentation (SSF), liquid state fermentation (LSF) and immobilized microorganism fermentation (IMF), and the new method was multi-microorganisms co-immobilization technology(MMCT), which used co-immobilized beads of ethanol-producing yeast, aroma-improving yeast and lactic acid bacteria (with a ratio of 6:3:1) for alcoholic fermentation and then used immobilized acetic acid bacteria for vinegar fermentation. [Result] The general quality of apple vinegar brewed by MMCT was superior to the others. Its total acidity reached to 3.845 g/100 ml, unvolatile acidity was about 0.600 g/100 ml, amino-nitrogen was higher than 0.510 g/100 ml, and the composing of flavor compounds was almost similar to that of SSF brewed apple vinegar. [Conclusion] The MMCT method was proven to be the optimum one for high quality apple vinegar brewing and might be widely used in the future.
基金supported by the Key Program of the National Natural Science Foundation of China (No. 19934003)the Grand Program of Natural Science Research of Anhui Education Department (No. ZD2007003-1)the Natural Science Research Program of Universities and Colleges of Anhui Province, China (Nos. KJ2008A19ZC, KJ2009B281Z, and KJ2009A053Z)
文摘La0.5Sm0.2Sr0.3MnO3/(Ag2O)x/2 (x = 0.00, 0.04, 0.08, 0.25, 0.30) samples were prepared by the solid-state reaction method, and their transport behaviors, transport mechanism, and magnetoresistance effect were studied through the measurement and fitting of p-T curves. The results show that the element Ag takes part in reaction when the doping amount is small. Ag is mainly distributed at the grain boundary of the host material and is in metallic state when the doping amount is relatively large; then the system becomes a two-phase composite. A small amount of Ag doping can apparently increase grain-boundary magnetoresistance induced by the spin-dependent scattering. The resistivity of the sample doped with 30 mol% Ag is one order of magnitude smaller than that of low-doped samples, and its magnetoresistance in the magnetic field of 0.5 T and at 300 K is strengthened apparently reaching 9.4%, which is connected not only with the improvement of the grain-boundary structure of the host material but also with the decrease of material resistivity.
基金This work was supported by the National Natural Science Foundation of China(52071137,51977071,51802040,and 21802020)the Science and Technology Innovation Program of Hunan Province(2021RC3066 and 2021RC3067)+1 种基金the Natural Science Foundation of Hunan Province(2020JJ3004 and 2020JJ4192)N.Zhang and X.Xie also acknowledge the financial support of the Fundamental Research Funds for the Central Universities.
文摘Low-temperature assembly of MXene nanosheets into three-dimensional(3D) robust aerogels addresses the crucial stability concern of the nano-building blocks during the fabrication process,which is of key importance for transforming the fascinating properties at the nanoscale into the macroscopic scale for practical applications.Herein,suitable cross-linking agents(amino-propyltriethoxysilane,Mn^(2+),Fe^(2+),Zn^(2+),and Co^(2+)) as interfacial mediators to engineer the interlayer interactions are reported to realize the graphene oxide(GO)-assisted assembly of Ti_(3)C_(2)T_(x) MXene aerogel at room temperature.This elaborate aerogel construction not only suppresses the oxidation degradation of Ti_(3)C_(2)T_(x) but also generates porous aerogels with a high Ti_(3)C_(2)T_(x) content(87 wt%) and robustness,thereby guaranteeing the functional accessibility of Ti_(3)C_(2)T_(x) nanosheets and operational reliability as integrated functional materials.In combination with a further sulfur modification,the Ti_(3)C_(2)T_(x) aerogel electrode shows promising electrochemical performances as the freestanding anode for sodium-ion storage.Even at an ultrahigh loading mass of 12.3 mg cm^(-2),a pronounced areal capacity of 1.26 mAh cm^(-2) at a current density of 0.1 A g^(-1) has been achieved,which is of practical significance.This work conceptually suggests a new way to exert the utmost surface functionalities of MXenes in 3D monolithic form and can be an inspiring scaffold to promote the application of MXenes in different areas.
基金financially supported by the National Key R@D Program of China(Grants 2016YFB0100100,2016YFA0200200)the National Natural Science Foundation of China(Grant Nos.51872283,22075279,21805273,22005297,22005298)+7 种基金the Liao Ning Revitalization Talents Program(Grant XLYC1807153)the Natural Science Foundation of Liaoning ProvinceJoint Research Fund Liaoning-Shenyang National Laboratory for Materials Science(Grant 20180510038)Dalian Innovation Support Plan for High Level Talents(2019RT09)the Dalian National Laboratory For Clean Energy(DNL),CASDNL Cooperation Fund,CAS(DNL180310,DNL180308,DNL201912,and DNL201915)DICP(DICP ZZBS201708,DICP ZZBS201802,DICP I2020032)the China Postdoctoral Science Foundation(2019M661141,2020M680995)。
文摘Synthesis and applications of three-dimensional(3 D)porous graphene frameworks(GFs)have attracted extensive interest owing to their intriguing advantages of high specific surface area,enriched porosity,excellent electrical conductivity,exceptional compressibility and processability.However,it is still challenging for economically viable,fast and scalable assembly of 3 D GFs at room-temperature.Herein,we reported a one-step scalable strategy for fast self-assembly of graphene oxide into 3 D macroscopically porous GFs,with assistance of polyoxometalates(POM)as functional cross-linker and hydrazine hydrate as reductant at room-temperature.The resulting 3 D interconnected macroporous POM-GFs uniformly decorated with ultrasmall POM nanoclusters were directly processed into binder-/additive-free film compact electrodes(1.68 g cm^(-3))with highly aligned,layer-stacked structure and electrically conductivity(622 S m-1)for high-performance supercapacitors,showing an impressive gravimetric capacitance of205 F g-1,volumetric capacitance of 334 F cm^(-3) at 1 mV s^(-1),and remarkable cycling stability with capacitance retention of 83%after 10,000 cycles,outperforming the most reported GFs.Further,the solid-state supercapacitors offered excellent gravimetric capacitance of 157 F g-1 exceptionally volumetric capacitance of 115 F cm^(-3) at 2 mV s^(-1) based on single electrode,and volumetric energy density of2.6 mWh cm^(-3).Therefore,this work will open novel opportunities to room-temperature fast assembly of 3 D porous graphene architectures for high-energy-density supercapacitors.
基金We thank the financial support from the National Natural Science Foundation of China.(No.20172038)
文摘Benzoin condensation promoted efficiently in three imidazolium based room tempera- ture ionic liquids [bmim]Br, [bmim]BF4 and [Bnmim]BF4 is reported for the first time. Benzoins were obtained in up to 91% yield within less than 30 min under mild conditions.
基金This research was supported by the Australian Research Council(ARC)(DE170100928,DP170101467)an Australian Renewable Energy Agency(ARENA)Project(G00849).The authors acknowledge the use of the facilities at the UOW Electron Microscopy Center(LE0882813 and LE0237478)and Dr.Tania Silver for critical reading of the manuscript.
文摘This work reports influence of two different electrolytes,carbonate ester and ether electrolytes,on the sulfur redox reactions in room-temperature Na-S batteries.Two sulfur cathodes with different S loading ratio and status are investigated.A sulfur-rich composite with most sulfur dispersed on the surface of a carbon host can realize a high loading ratio(72%S).In contrast,a confined sulfur sample can encapsulate S into the pores of the carbon host with a low loading ratio(44%S).In carbonate ester electrolyte,only the sulfur trapped in porous structures is active via‘solid-solid’behavior during cycling.The S cathode with high surface sulfur shows poor reversible capacity because of the severe side reactions between the surface polysulfides and the carbonate ester solvents.To improve the capacity of the sulfur-rich cathode,ether electrolyte with NaNO_(3) additive is explored to realize a‘solid-liquid’sulfur redox process and confine the shuttle effect of the dissolved polysulfides.As a result,the sulfur-rich cathode achieved high reversible capacity(483 mAh g^(−1)),corresponding to a specific energy of 362 Wh kg^(−1) after 200 cycles,shedding light on the use of ether electrolyte for high-loading sulfur cathode.
基金supported by the National Natural Science Foundation of China(21663021)China Postdoctoral Science Foundation(2015M571977)+1 种基金the Natural Science Foundation of Jiangxi Province(20161BAB213058)the Natural Science Key Project of Jiangxi Province(2017ACB20040)
文摘A novel green nanophosphor CaHPO4:Tb3+ was synthesized via a room-temperatureco-precipitation route driven by ethanol solvent. X-ray powder diffraction (XRD), scanningelectron microscopy (SEM) and photoluminescence spectroscopy (PL) techniques were utilizedto characterize the structure, morphology and fluorescence performance of the obtained powders.The results demonstrated that the prepared samples were well crystallized with triclinic phaseCaHPO4 structure and particle-like morphology. Photoluminescence measurements indicated thatCaHPOa:Tb3+ had a strong absorption peak at 370 nm and exhibited characteristic emissions withseveral sharp peaks corresponding to the transitions 5D4-7FJ (jr = 6-3) of Tb3+. Moreover, theluminescence optimum concentration for CaHPO4:Tb3+ was determined to be 11 mol%, whichmight be a promising green-emitting ohosohor for display applications.
文摘[Objective] The aim was to study the brewing technology of apple brandy. [Method] After the activated wine yeast was added to the apple juice by sizing classification, rinsing, falling to pieces and squeezing, the preceding fermentation began. Every other day, parameters of fer- mentation broth such as temperature, pH, acidity, sugar content and bubble nurdbers were detected. Once the sugar content of the fermentation suspension was approaching 5 -6 °Bx, the following fermentation would start via pouring wine. After 20 -30 days, the cider was changed into origi- nal apple brandy by distillation. The last procedure was aging which included man-made speediness aging and oak wood aging about 20 days. The physical and chemical compositions before and after aging were measured. [ Result] 22.5 kg apple resulted into 16.56 L of juice. The juice yield was about 73.6% (10 ml/kg). The alcohol rate of distilled apple juice was 20.0%. The color of apple brandy was darker than that of original apple brandy. Alcohol level reduced, but total acidity, fixed acid, lipid and furfural content rose. [ Conclusion] The apple brandy was of particular flavor and high quality by selecting befitting fruit, activated wine yeast and feasible brewing, distillation and aging technology. It will be conductive to the development of apple processing industry and the research and development of key brandy technique.
基金the financial support from the Ministry of Science and Technology of China (Nos.2016YFA0204100 and 2016YFA0200200)the National Natural Science Foundation of China (Nos.21890753, 21573220 and 21802124)+2 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (No.QYZDB-SSW-JSC020)the DNL Cooperation Fund, CAS (No.DNL180201)the financial and technique supports from the Westlake Education Foundation, Supercomputing Systems in the Information Technology Center of Westlake University
文摘The catalytic conversion of ethane to high value-added chemicals is significantly important for utilization of hydrocarbon resources.However, it is a great challenge due to the typically required high temperature(> 400 ℃) conditions.Herein, a highly active catalytic conversion process of ethane at room temperature(25 ℃) is reported on single iron atoms confined in graphene via the porphyrin-like N4-coordination structures.Combining with the operando time of flight mass spectrometer and density functional theory calculations, the reaction is identified as a radical mechanism, in which the C–H bonds of the same C atom are preferentially and sequentially activated, generating the value-added C2 chemicals, simultaneously avoiding the over-oxidation of the products to CO2.The in-situ formed O–FeN4–O structure at the single iron atom serves as the active center for the reaction and facilitates the formation of ethyl radicals.This work deepens the understanding of alkane C–H activation on the FeN4 center and provides the reference in development of efficient catalyst for selective oxidation of light alkane.
基金supported by the National Training Program of Innovation and Entrepreneurship for Undergraduates(No.201910389022).
文摘To clarify the contribution of oxygen vacancies to room-temperature ferromagnetism(RTFM)in cobalt doped TiO_(2)(Co-TiO_(2)),and in order to obtain the high level of magnetization suitable for spintronic devices,in this work,Co-TiO_(2) nano-particles are prepared via the sol-gel route,followed by vacuum annealing for different durations,and the influence of vacu-um annealing duration on the structure and room-temperature magnetism of the compounds is examined.The results reveal that with an increase in annealing duration,the concentration of oxygen vacancies rises steadily,while the saturation magnetiza-tion(Ms)shows an initial gradual increase,followed by a sharp decline,and even disappearance.The maximum Ms is as high as 1.19 emu/g,which is promising with respect to the development of spintronic devices.Further analysis reveals that oxygen va-cancies,modulated by annealing duration,play a critical role in tuning room-temperature magnetism.An appropriate concentra-tion of oxygen vacancies is beneficial in terms of promoting RTFM in Co-TiO_(2).However,excessive oxygen vacancies will result in a negative impact on RTFM,due to antiferromagnetic superexchange interactions originating from nearest-neighbor Co^(2+)ions.
文摘The properties of saccharified and boiled worts between extruded and traditional non-extruded beer adjuncts were studied at the laboratory and a small beer brewing equipment(100 L) in this paper. Test results indicate that the main saccharification indices and filtration speeds of worts between extruded and traditional non-extruded beer adjuncts are similar basically. The collected rate of extracted material of worts of extruded beer adjuncts is 8% more than that of traditional non-extruded beer adjuncts. Fermentation time of worts of extruded beer adjuncts is 10 % less than that of traditional non-extruded beer adjuncts. The energy consumption of extruded beer adjuncts in saccharification process is 13 % less than that of traditional non-extruded beer adjuncts.
文摘The rising cost of energy and environmental concerns have led the brewing industry to search for techniques of reducing energy consumption in brewery operations. In this paper, pinch analysis was applied to a typical Ugandan based brewery process to target for the energy requirements of the process. Hint software was used for the analysis. At the chosen ΔTmin of 10℃, the minimum cooling and heating utility requirements of the brewery studied were determined as being 4862.21 kW and 8294.21 kW respectively, with a pinch temperature at 68℃. It was observed that using the technique, 1806.59 kW of energy could be recovered through process to process heat exchange which presented an energy saving potential of 21.5%. It is recommended that results from this study could be used in the design or retrofit of a heat exchanger network of a brewery for improved energy efficiency. Considerations can also be made for other values of ΔTmin.
基金Supported by the Foundation for Outstanding Young Scientist in Shandong Province
文摘The brewing characteristics of three kinds of beer yeasts commonly used in the market were compared and studied.The results showed that the three kinds of yeasts had different characteristics and slightly different fermentation degrees,but the fermentation speeds all were higher and the diacetyl reduction ability was excellent.The finished beers were golden yellow in appearance,rich and delicate in foam,pleasant in aroma,mellow in body and similar in physicochemical indexes,all in line with domestic beer standards.
文摘Two-dimensional (2D) ferromagnetic semiconductors have been recognized as the most promising candidates for next-generation low-cost, high-performance and nano-scale spintronic applications such as spin field-effect transistors and quantum computation/communication. However, as one of the 125 important scientific issues raised by Science journal in 2005 that "is it possible to create magnetic semiconductors that work at room temperature?", how to achieve a feasible ferromagnetic semiconductor with high Curie temperature is still a long-standing challenge despite of tremendous efforts have been devoted in this field since 1960s. The recent discovery of 2D ferromagnetic semiconductors Cr2Ge2Te6 and CrI3 has evoked new research interests in 2D intrinsic ferromagnetic semiconductors. But the low Curie temperature (<45 K) of these materials is still badly hindering their industrial applications.
文摘A Fe-containing mesoporous silica has been synthesized at room temperature using alkylamine as templating surfactant; XRD, IR, ESR and Si-29 MAS NMR spectra provided evidence of the presence of framework and non-framework iron(III) in Fe-HMS material.
基金Project supported by the Innovation Foundation of BUAA for PhD Graduates (Grant No. 292122)Equipment Research Foundation of China
文摘TiO2 nano powders with Mn concentration of 0 at%-12 at% were synthesized by the sol-gel process, and were annealed at 500 ℃ and 800 ℃ in air for 2 hrs. X-ray diffraction (XRD) measurements indicate that the Mn-TiO2 nano powders with Mn concentration of 1 at% and 2 at% annealed at 500 and 800 ℃ are of pure anatase and rutile, respectively. The scanning electron microscope (SEM) observations reveal that the crystal grain size increases with the annealing temperature, and the high resolution transmission electron microscopy (HRTEM) investigations further indicate that the samples are well crystallized, confirming that Mn has doped into the TiO2 crystal lattice effectively. The room temperature ferromagnetism, which could be explained within the scope of the bound magnetic polaron (BMP) theory, is detected in the Mn-TiO2 samples with Mn concentration of 2 at%, and the magnetization of the powders annealed at 500 ℃ is stronger than that of the sample treated at 800 ℃. The UV-VIS diffuse reflectance spectra results demonstrate that the absorption of the TiO2 powders could be enlarged by the enhanced trapped electron absorption caused by Mn doping.
文摘Long-term room-temperature annealing effects of InGaAs/InP quantum wells with different wells (namely triple wells and five wells embedded) and bulk InCaAs are investigated after high energy electron irradiation. It is observed that the photoluminescence (PL) intensity of bulk InGaAs materials is enhanced after low dose electron irradiation and the PL intensity for all the three samples is degraded dramatically when the electron dose is relatively high. With respect to the room-temperature annealing, we find that the PL intensity for both samples recovers relatively fast at the initial stage. The PL performance of multiple quantum-well samples shows better recovery after irradiation compared with the results of bulk InGaAs materials. Meanwhile, the recovery speed factors of multiple quantum-well samples are relatively faster than those of the bulk InGaAs materials as well. We infer that the recovery difference between the quantum-well materials and bulk materials originates from the fact that the radiation induced defects are confined in the quantum wells as a consequence of the free energy barrier between the In0.53Ga0.47 As wells and InP barrier layers.
基金Supported by Wuling Mountaionus Area Study Center Opening Fund( WLYF-2012002)
文摘[Objective] The aim was to to enhance the technology to brew better the traditional grape wine, which provided theoretical basis for the development of Wuling Mountain grape wine. [Method] Taking grapes in Wuling Mountain as the row materials, Saccharomyces cerevisiae of different wines was chosen and brewed. The quality of grape wine was studied and the sensory evaluation was analyzed by dint of GC-MS. [Result] Result illustrated that the ethanol concentration of the wine brewed by exploration craft A was 68.5 g/L and that brewed by exploration craft B was 59.5 g/L; the higher alcohol content of craft A was 37.86% while that of craft B is 35.99%; craft A's percentage content of esters was 28.82% while that of B was 27.10%; craft A's percentage content of acids was 2.20% while that of B was 1.24%; the gamma-aminobutyric acid content of craft A was 33.2 g/100 ml while that of craft B was 35.4 g/100 ml. the essential amino-acid content of craft A was 11.8 g/100 ml while that of craft B was 13.9 g/100 ml .The result indicates that the wine brewed by craft A was aromatic and had special flavor. [Conclusion] In this case, the grape wine has particular flavor and has good property, which can be exploited.