The peak ground acceleration (PGA), the volume of a sliding mass V, the height of a mountain HL and the slope angle θ of a mountain are four important parameters affecting the horizontal run-out distance of a lands...The peak ground acceleration (PGA), the volume of a sliding mass V, the height of a mountain HL and the slope angle θ of a mountain are four important parameters affecting the horizontal run-out distance of a landslide L. Correlations among them are studied statistically based on field investigations from 67 landslides triggered by the ground shaking and other factors during the Wenchuan earthquake, and then a prediction model for horizontal run-out distance L is developed in this study. This model gives due consideration to the implications of the above four parameters on the horizontal run-out distance L and the validity of the model is verified by the Donghekou and Magong Woqian landslides. At the same time, the advantages of the model are shown by comparing it with two other common prediction methods. The major findings drawn from the analyses and comparisons are: (1) an exponential relationship exists between L and log V, L and log HL, L and log PGA separately, but a negative exponential relationship exists between L and log tan0, which agrees with the statistical results; and (2) according to the analysis results of the relative relationship between the height of a mountain (H) and the place where the landslides occur, the probabilities at distances of2H/3-H, H/3-2H/3, and O-H/3 are 70.8%, 15.4%, and 13.8%, respectively, revealing that most landslides occurred at a distance of H/2-H. This prediction model can provide an effective technical support for the prevention and mitigation of landslide hazards.展开更多
This paper discusses the effect of berm width and elevation of composite slope on irregular wave run-up. Based on the data obtained from model tests, the formula and distribution of irregular wave run-up on composite ...This paper discusses the effect of berm width and elevation of composite slope on irregular wave run-up. Based on the data obtained from model tests, the formula and distribution of irregular wave run-up on composite slope are derived. The changing of wind speed, width and elevation of the berm are considered comprehensively. The wave run-up with various exceedance probability can be es-timated utilizing the distribution curves of irregular wave run-up.展开更多
The run-up on offshore structures induced by the steep regular wave is a highly nonlinear flow with a free surface. This article focuses on the investigation of the steep regular wave run-up on a single vertical cylin...The run-up on offshore structures induced by the steep regular wave is a highly nonlinear flow with a free surface. This article focuses on the investigation of the steep regular wave run-up on a single vertical cylinder by solving the Navier-Stokes equations. A numerical wave tank is established based on the open-source package to simulate the wave scattering induced by a vertical cylinder. The VOF method is applied to capture the large deformation and breaking of the free surface. The numerical model is validated by experimental results. The relative wave run-ups on the front face and the back face along the centerline of a cylinder are analyzed. The changes of the relative run-ups with the wave steepness, the relative diameter and the relative depth are studied. It is found that the relative run-ups on the front face and the back face of the cylinder depend mainly on the wave steepness and the relative diameter, while the dependence on the relative depth is weak. The empirical formulae are proposed to calculate the relative run-ups in terms of the wave steepness of incident regular waves and the relative diameter of a cylinder.展开更多
Based on detailed analysis of advantages and disadvantages of the existing connected-component labeling (CCL) algorithm,a new algorithm for binary connected components labeling based on run-length encoding (RLE) a...Based on detailed analysis of advantages and disadvantages of the existing connected-component labeling (CCL) algorithm,a new algorithm for binary connected components labeling based on run-length encoding (RLE) and union-find sets has been put forward.The new algorithm uses RLE as the basic processing unit,converts the label merging of connected RLE into sets grouping in accordance with equivalence relation,and uses the union-find sets which is the realization method of sets grouping to solve the label merging of connected RLE.And the label merging procedure has been optimized:the union operation has been modified by adding the "weighted rule" to avoid getting a degenerated-tree,and the "path compression" has been adopted when implementing the find operation,then the time complexity of label merging is O(nα(n)).The experiments show that the new algorithm can label the connected components of any shapes very quickly and exactly,save more memory,and facilitate the subsequent image analysis.展开更多
In this paper,the focused wave groups with different parameters and their actions on a vertical cylinder are experimentally studied. The harmonic wave characteristics of the focusing waves are analyzed by the addition...In this paper,the focused wave groups with different parameters and their actions on a vertical cylinder are experimentally studied. The harmonic wave characteristics of the focusing waves are analyzed by the addition and subtraction of the crest and trough focusing waves. The analyzed results show that higher order harmonics can be generated because of the interaction of component waves. Nonlinearity increases with the inputted wave amplitude and the frequency width increment. Further, the wave run-up around the vertical circular cylinder is experimentally studied. It increases with the wave steepness and the relative cylinder diameter increase. However, the variations of wave run-up around the circular cylinder are different. The researches provide a reference for further numerical studies.展开更多
An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of f...An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of flow resistance. A set of algebraic expressions are obtained for free surface elevation inside and outside chamber, and reflection coefficient. The prediction of the reflection coefficients shows that the relative widths of the chamber inducing the minimum reflection coefficient for a slotted-wall caisson breakwater are in a range of 0.10~0.20, which are smaller than that (0.15~0.25) for a perforated-wall caisson breakwater. The reflection coefficients and free surface elevation obtained by the present model are compared with that of laboratory experiments carried out by previous researchers.展开更多
This paper describes a plane regular wave interaction with a combined cylinder which consists of a solid inner column and a coaxial perforated outer cylinder. The outer perforated surface is a thin porous cylinder wit...This paper describes a plane regular wave interaction with a combined cylinder which consists of a solid inner column and a coaxial perforated outer cylinder. The outer perforated surface is a thin porous cylinder with an annular gap between it and the inner cylinder. The non-linear boundary condition at the perforated wall is a prime focus in the study; energy dissipation at the perforated wall occurs through the resistance to the fluid across the perforated wall. Explicit analytical formulae are presented to calculate the wave run-up on the outer and inner surfaces of the perforated cylinder and the surface of the inner column. The theoretical results of the wave run-up are compared with previous experimental data. Numerical results have also been obtained: when the ratio of the annular gap between the two cylinders to incident wavelength (b-a)/L≤0. 1, the wave run-up on the inner surface of the perforated cylinder and the surface of inner column can partially or completely exceed the incident wave height.展开更多
Submerged barriers are constructed in coastal zones for shoreline or harbor protection or to prevent the beach erosion. In the present study, the wave run-up on a vertical seawall protected by a submerged barrier is a...Submerged barriers are constructed in coastal zones for shoreline or harbor protection or to prevent the beach erosion. In the present study, the wave run-up on a vertical seawall protected by a submerged barrier is analyzed. The physical configurations include a rigid barrier and a long channel of finite depth. For linear water waves, by matching the velocity along the barrier and along the gap, the systems of linear equations about the velocity potentials are obtained. The wave rim-up is further analyzed for various settings of barrier height and distance between the barrier and the wall, i.e. the chamber length. For nonlinear waves and random sea waves, a numerical model is extended to investigate the effect parameters of the barrier on the wave rim-up against the seawall. Not only the numerical simulations, but also the analytical results illustrate that the wave run-up on the seawall depends very much on the distance between the barrier and the vertical seawall.展开更多
The earthquake of March 11 of magnitude 9 offshore Tohoku, Japan, was followed by a tsunami wave with particularly destructive impact, over a coastal area extending approx. 850km along the Pacific Coast of Honshu Isla...The earthquake of March 11 of magnitude 9 offshore Tohoku, Japan, was followed by a tsunami wave with particularly destructive impact, over a coastal area extending approx. 850km along the Pacific Coast of Honshu Island. First arrival times and measurements and maximum height were recorded by the Japanese monitoring system (wherever there was no failure of the equipment). The maximum run-up is well evident in satellite images available through USGS, Google and other institutes. Moreover, personal observations of Prof. Lekkas were made during a field survey in March 2011. The results of the study of the tsunami impact and run-up show the variety of factors affecting the run-up, creating zones with similar phenomena, but also specific locations where run-up exceeds by far the run-up zone maximum values. This differentiation, observed also in the past by other authors, is here attributed to the general orientation of the coast, the distance from the tsunami generation area, bathymetry offshore, the coastline morphology and land geomorphology. In certain cases that funnelling and reflection effects in narrow gulfs parallel to the tsunami propagation vector were combined with narrow valleys onshore, peak run-up exceeded 20m, or even 40 m (Miyagi coastline, Ogatsu, Onagawa, etc).展开更多
The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a...The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a solitary wave run-up calculation model was established based on artificial neural networks in this study. A back-propagation (BP) network with one hidden layer was adopted and modified with the additional momentum method and the auto-adjusting learning factor. The model was applied to calculation of solitary wave run-up. The correlation coefficients between the neural network model results and the experimental values was 0.996 5. By comparison with the correlation coefficient of 0.963 5, between the Synolakis formula calculation results and the experimental values, it is concluded that the neural network model is an effective method for calculation and analysis of solitary wave ran-up.展开更多
Ship waves are observed with wave-generating techniques by way of simulating express liners in the Zhujiang Delta.The analog test study of ship waves is conducted in a wave flume and a wave basin respectively. Thus, d...Ship waves are observed with wave-generating techniques by way of simulating express liners in the Zhujiang Delta.The analog test study of ship waves is conducted in a wave flume and a wave basin respectively. Thus, different wave elements and different incident angles of ship waves are decided; so are different slopes of protection, the plafform, width of plafform, and the influence over the ship wave run-up on protection from armor coat structure. The empirical relation-展开更多
We consider the flow of an incompressible viscous Maxwell fluid between two parallel plates, initially induced by a constant pressure gradient. The pressure gradient is withdrawn and the upper plate moves with a unifo...We consider the flow of an incompressible viscous Maxwell fluid between two parallel plates, initially induced by a constant pressure gradient. The pressure gradient is withdrawn and the upper plate moves with a uniform velocity while the lower plate continues to be at rest. The arising flow is referred to as run-up flow. The unsteady governing equations are solved as initial value problem using Laplace transform technique. The expression for velocity, shear stresses on both plates and discharge are obtained. The behavior of the velocity, shear stresses and mass flux has been discussed in detail with respect to variations in different governing flow parameters and is presented through graphs.展开更多
An iterative (run-to-run) optimization method was presented for batch processes under input constraints. Generally it is very difficult to acquire an accurate mechanistic model for a batch process.Because support vect...An iterative (run-to-run) optimization method was presented for batch processes under input constraints. Generally it is very difficult to acquire an accurate mechanistic model for a batch process.Because support vector machine is powerful for the problems characterized by small samples,nonlinearity, high dimension and local minima, support vector regression models were developed for the end-point optimization of batch processes. Since there is no analytical way to find the optimal trajectory, an iterative method was used to exploit the repetitive nature of batch processes to determine the optimal operating policy. The optimization algorithm is proved convergent. The numerical simulation shows that the method can improve the process performance through iterations.展开更多
A series of hydraulic model tests are carried out to investigate random wave run-up and overtopping on smooth, impermeable single slope and composite slope. Based on the analysis of the influences of wave steepness, s...A series of hydraulic model tests are carried out to investigate random wave run-up and overtopping on smooth, impermeable single slope and composite slope. Based on the analysis of the influences of wave steepness, structure slope, incident wave angle, width of the berm and water depth on the berm and the wave run-up, empirical formulas for wave run-up on dike are proposed. Moreover, empirical formula on estimating the wave run-up on composite slope with multiple berms is presented for practical application of complex dike cross-section. The present study shows that the influence factors for wave overtopping are almost the same as those for wave run-up and the trend of the wave overtopping variation with main influence parameters is also similar to that for wave run-up. The trend of the wave overtopping variations can be well described by two main factors, i.e. the wave run-up and the crest freeboard of the structure. A new prediction method for wave overtopping is proposed for random waves. The proposed prediction formulas are applied to case study of over forty cases and the results show that the prediction methods are good enough for practical design purposes.展开更多
This paper. details experiments undertaken in the UK Coastal Research Facility (CRF)at Hy draulies Research (HR), Wallingford, on transformation and run-up of wave trains. The purpose of these experiments is to provid...This paper. details experiments undertaken in the UK Coastal Research Facility (CRF)at Hy draulies Research (HR), Wallingford, on transformation and run-up of wave trains. The purpose of these experiments is to provide verification data for numerical models of wave transformation in shoaling. surf and swash zones. This is the kind of data ih:lt flume experiments are unable to provide, and is collected in the highly controlled environment of CRF where extrinsic factors present in the field are not an issue. The experiments concerning wave trains are undertaken by use of existing wave generation software, and the run-up measurements are made with large experimental run-up gauges.展开更多
Tsunami ran-up height is a significant parameter for dimensions of coastal structures. In the present study, tsunami run-up heights are estimated by three different Artificial Neural Network (ANN) models, i.e. Feed ...Tsunami ran-up height is a significant parameter for dimensions of coastal structures. In the present study, tsunami run-up heights are estimated by three different Artificial Neural Network (ANN) models, i.e. Feed Forward Back Propagation (FFBP), Radial Basis Functions (RBF) and Generalized Regression Neural Network (GRNN). As the input for the ANN configuration, the wave height (H) values are employed. It is shown that the tsunami ran-up height values are closely approximated with all of the applied ANN methods. The ANN estimations are slightly superior to those of the empirical equation. It can be seen that the ANN applications are especially significant in the absence of adequate number of laboratory experiments. The results also prove that the available experiment data set can be extended with ANN simulations. This may be helpful to decrease the burden of the experimental studies and to supply results for comparisons.展开更多
-The effect of wave group on wave run-up on a slope dike is mainly discussed in this paper. Two simulating methods of wave group and their applications in laboratory are introduced. Synthesizing the research results o...-The effect of wave group on wave run-up on a slope dike is mainly discussed in this paper. Two simulating methods of wave group and their applications in laboratory are introduced. Synthesizing the research results of wave run-up on a slope dike, the effect of wave group on wave run-up on a slope dike in coastal protection engineering is studied as the main point.展开更多
基金NSF of China under Contract No. 41030742NBRP of China (973 Program) under Grant No.2011CB013605Scientific Research Foundation of Graduate School of Southwest Jiaotong University
文摘The peak ground acceleration (PGA), the volume of a sliding mass V, the height of a mountain HL and the slope angle θ of a mountain are four important parameters affecting the horizontal run-out distance of a landslide L. Correlations among them are studied statistically based on field investigations from 67 landslides triggered by the ground shaking and other factors during the Wenchuan earthquake, and then a prediction model for horizontal run-out distance L is developed in this study. This model gives due consideration to the implications of the above four parameters on the horizontal run-out distance L and the validity of the model is verified by the Donghekou and Magong Woqian landslides. At the same time, the advantages of the model are shown by comparing it with two other common prediction methods. The major findings drawn from the analyses and comparisons are: (1) an exponential relationship exists between L and log V, L and log HL, L and log PGA separately, but a negative exponential relationship exists between L and log tan0, which agrees with the statistical results; and (2) according to the analysis results of the relative relationship between the height of a mountain (H) and the place where the landslides occur, the probabilities at distances of2H/3-H, H/3-2H/3, and O-H/3 are 70.8%, 15.4%, and 13.8%, respectively, revealing that most landslides occurred at a distance of H/2-H. This prediction model can provide an effective technical support for the prevention and mitigation of landslide hazards.
文摘This paper discusses the effect of berm width and elevation of composite slope on irregular wave run-up. Based on the data obtained from model tests, the formula and distribution of irregular wave run-up on composite slope are derived. The changing of wind speed, width and elevation of the berm are considered comprehensively. The wave run-up with various exceedance probability can be es-timated utilizing the distribution curves of irregular wave run-up.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.11632012 and 41861144024)the National Basic Research Program of China(973 Program,Grant No.2014CB046203)
文摘The run-up on offshore structures induced by the steep regular wave is a highly nonlinear flow with a free surface. This article focuses on the investigation of the steep regular wave run-up on a single vertical cylinder by solving the Navier-Stokes equations. A numerical wave tank is established based on the open-source package to simulate the wave scattering induced by a vertical cylinder. The VOF method is applied to capture the large deformation and breaking of the free surface. The numerical model is validated by experimental results. The relative wave run-ups on the front face and the back face along the centerline of a cylinder are analyzed. The changes of the relative run-ups with the wave steepness, the relative diameter and the relative depth are studied. It is found that the relative run-ups on the front face and the back face of the cylinder depend mainly on the wave steepness and the relative diameter, while the dependence on the relative depth is weak. The empirical formulae are proposed to calculate the relative run-ups in terms of the wave steepness of incident regular waves and the relative diameter of a cylinder.
文摘Based on detailed analysis of advantages and disadvantages of the existing connected-component labeling (CCL) algorithm,a new algorithm for binary connected components labeling based on run-length encoding (RLE) and union-find sets has been put forward.The new algorithm uses RLE as the basic processing unit,converts the label merging of connected RLE into sets grouping in accordance with equivalence relation,and uses the union-find sets which is the realization method of sets grouping to solve the label merging of connected RLE.And the label merging procedure has been optimized:the union operation has been modified by adding the "weighted rule" to avoid getting a degenerated-tree,and the "path compression" has been adopted when implementing the find operation,then the time complexity of label merging is O(nα(n)).The experiments show that the new algorithm can label the connected components of any shapes very quickly and exactly,save more memory,and facilitate the subsequent image analysis.
基金supported bythe National Natural Science Foundation of China (Grant Nos.50379002 and 50921001)the New Century Excellent Talents in University (Grant No.NCET-05-0282)
文摘In this paper,the focused wave groups with different parameters and their actions on a vertical cylinder are experimentally studied. The harmonic wave characteristics of the focusing waves are analyzed by the addition and subtraction of the crest and trough focusing waves. The analyzed results show that higher order harmonics can be generated because of the interaction of component waves. Nonlinearity increases with the inputted wave amplitude and the frequency width increment. Further, the wave run-up around the vertical circular cylinder is experimentally studied. It increases with the wave steepness and the relative cylinder diameter increase. However, the variations of wave run-up around the circular cylinder are different. The researches provide a reference for further numerical studies.
文摘An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of flow resistance. A set of algebraic expressions are obtained for free surface elevation inside and outside chamber, and reflection coefficient. The prediction of the reflection coefficients shows that the relative widths of the chamber inducing the minimum reflection coefficient for a slotted-wall caisson breakwater are in a range of 0.10~0.20, which are smaller than that (0.15~0.25) for a perforated-wall caisson breakwater. The reflection coefficients and free surface elevation obtained by the present model are compared with that of laboratory experiments carried out by previous researchers.
文摘This paper describes a plane regular wave interaction with a combined cylinder which consists of a solid inner column and a coaxial perforated outer cylinder. The outer perforated surface is a thin porous cylinder with an annular gap between it and the inner cylinder. The non-linear boundary condition at the perforated wall is a prime focus in the study; energy dissipation at the perforated wall occurs through the resistance to the fluid across the perforated wall. Explicit analytical formulae are presented to calculate the wave run-up on the outer and inner surfaces of the perforated cylinder and the surface of the inner column. The theoretical results of the wave run-up are compared with previous experimental data. Numerical results have also been obtained: when the ratio of the annular gap between the two cylinders to incident wavelength (b-a)/L≤0. 1, the wave run-up on the inner surface of the perforated cylinder and the surface of inner column can partially or completely exceed the incident wave height.
基金supported by the National Natural Science Foundation of China (Grant No.10702042)the Scientific Reseasch Startup Foundation of Shanghai Jiao Tong University (Grant No. A2823B) the Shanghai Leading Academic Discipline Project (Grant No.B206)
文摘Submerged barriers are constructed in coastal zones for shoreline or harbor protection or to prevent the beach erosion. In the present study, the wave run-up on a vertical seawall protected by a submerged barrier is analyzed. The physical configurations include a rigid barrier and a long channel of finite depth. For linear water waves, by matching the velocity along the barrier and along the gap, the systems of linear equations about the velocity potentials are obtained. The wave rim-up is further analyzed for various settings of barrier height and distance between the barrier and the wall, i.e. the chamber length. For nonlinear waves and random sea waves, a numerical model is extended to investigate the effect parameters of the barrier on the wave rim-up against the seawall. Not only the numerical simulations, but also the analytical results illustrate that the wave run-up on the seawall depends very much on the distance between the barrier and the vertical seawall.
文摘The earthquake of March 11 of magnitude 9 offshore Tohoku, Japan, was followed by a tsunami wave with particularly destructive impact, over a coastal area extending approx. 850km along the Pacific Coast of Honshu Island. First arrival times and measurements and maximum height were recorded by the Japanese monitoring system (wherever there was no failure of the equipment). The maximum run-up is well evident in satellite images available through USGS, Google and other institutes. Moreover, personal observations of Prof. Lekkas were made during a field survey in March 2011. The results of the study of the tsunami impact and run-up show the variety of factors affecting the run-up, creating zones with similar phenomena, but also specific locations where run-up exceeds by far the run-up zone maximum values. This differentiation, observed also in the past by other authors, is here attributed to the general orientation of the coast, the distance from the tsunami generation area, bathymetry offshore, the coastline morphology and land geomorphology. In certain cases that funnelling and reflection effects in narrow gulfs parallel to the tsunami propagation vector were combined with narrow valleys onshore, peak run-up exceeded 20m, or even 40 m (Miyagi coastline, Ogatsu, Onagawa, etc).
基金supported by State Key Development Program of Basic Research of China (Grant No.2010CB429001)
文摘The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a solitary wave run-up calculation model was established based on artificial neural networks in this study. A back-propagation (BP) network with one hidden layer was adopted and modified with the additional momentum method and the auto-adjusting learning factor. The model was applied to calculation of solitary wave run-up. The correlation coefficients between the neural network model results and the experimental values was 0.996 5. By comparison with the correlation coefficient of 0.963 5, between the Synolakis formula calculation results and the experimental values, it is concluded that the neural network model is an effective method for calculation and analysis of solitary wave ran-up.
文摘Ship waves are observed with wave-generating techniques by way of simulating express liners in the Zhujiang Delta.The analog test study of ship waves is conducted in a wave flume and a wave basin respectively. Thus, different wave elements and different incident angles of ship waves are decided; so are different slopes of protection, the plafform, width of plafform, and the influence over the ship wave run-up on protection from armor coat structure. The empirical relation-
文摘We consider the flow of an incompressible viscous Maxwell fluid between two parallel plates, initially induced by a constant pressure gradient. The pressure gradient is withdrawn and the upper plate moves with a uniform velocity while the lower plate continues to be at rest. The arising flow is referred to as run-up flow. The unsteady governing equations are solved as initial value problem using Laplace transform technique. The expression for velocity, shear stresses on both plates and discharge are obtained. The behavior of the velocity, shear stresses and mass flux has been discussed in detail with respect to variations in different governing flow parameters and is presented through graphs.
基金National Natural Science Foundation of China(No.60504033)
文摘An iterative (run-to-run) optimization method was presented for batch processes under input constraints. Generally it is very difficult to acquire an accurate mechanistic model for a batch process.Because support vector machine is powerful for the problems characterized by small samples,nonlinearity, high dimension and local minima, support vector regression models were developed for the end-point optimization of batch processes. Since there is no analytical way to find the optimal trajectory, an iterative method was used to exploit the repetitive nature of batch processes to determine the optimal operating policy. The optimization algorithm is proved convergent. The numerical simulation shows that the method can improve the process performance through iterations.
文摘A series of hydraulic model tests are carried out to investigate random wave run-up and overtopping on smooth, impermeable single slope and composite slope. Based on the analysis of the influences of wave steepness, structure slope, incident wave angle, width of the berm and water depth on the berm and the wave run-up, empirical formulas for wave run-up on dike are proposed. Moreover, empirical formula on estimating the wave run-up on composite slope with multiple berms is presented for practical application of complex dike cross-section. The present study shows that the influence factors for wave overtopping are almost the same as those for wave run-up and the trend of the wave overtopping variation with main influence parameters is also similar to that for wave run-up. The trend of the wave overtopping variations can be well described by two main factors, i.e. the wave run-up and the crest freeboard of the structure. A new prediction method for wave overtopping is proposed for random waves. The proposed prediction formulas are applied to case study of over forty cases and the results show that the prediction methods are good enough for practical design purposes.
基金This project was supported by the Flood and Coastal Defense Commission of UK(FD0204)the National Natural Science Foundation of China(59809001)
文摘This paper. details experiments undertaken in the UK Coastal Research Facility (CRF)at Hy draulies Research (HR), Wallingford, on transformation and run-up of wave trains. The purpose of these experiments is to provide verification data for numerical models of wave transformation in shoaling. surf and swash zones. This is the kind of data ih:lt flume experiments are unable to provide, and is collected in the highly controlled environment of CRF where extrinsic factors present in the field are not an issue. The experiments concerning wave trains are undertaken by use of existing wave generation software, and the run-up measurements are made with large experimental run-up gauges.
文摘Tsunami ran-up height is a significant parameter for dimensions of coastal structures. In the present study, tsunami run-up heights are estimated by three different Artificial Neural Network (ANN) models, i.e. Feed Forward Back Propagation (FFBP), Radial Basis Functions (RBF) and Generalized Regression Neural Network (GRNN). As the input for the ANN configuration, the wave height (H) values are employed. It is shown that the tsunami ran-up height values are closely approximated with all of the applied ANN methods. The ANN estimations are slightly superior to those of the empirical equation. It can be seen that the ANN applications are especially significant in the absence of adequate number of laboratory experiments. The results also prove that the available experiment data set can be extended with ANN simulations. This may be helpful to decrease the burden of the experimental studies and to supply results for comparisons.
文摘-The effect of wave group on wave run-up on a slope dike is mainly discussed in this paper. Two simulating methods of wave group and their applications in laboratory are introduced. Synthesizing the research results of wave run-up on a slope dike, the effect of wave group on wave run-up on a slope dike in coastal protection engineering is studied as the main point.