When a steel plate produced by a steel plant leaves the factory,its upper surface should be marked with the specification,variety,batch number,and other identifying information,and its side should be marked with a sid...When a steel plate produced by a steel plant leaves the factory,its upper surface should be marked with the specification,variety,batch number,and other identifying information,and its side should be marked with a side marking.The side marking contains the plate number,specification,batch number,and other information,which are convenient for customers to accurately identify relevant information after stacking.However,because of the influence of weather,environment,and other factors,the side marking becomes unidentifiable when the steel plate is corroded,affecting the customer’s loading,unloading,and other operations.The development and application of side anticorrosion devices and cleaning of finished heavy steel plates with antirust agents will solve the problem of unrecognizable side marking due to corrosion.展开更多
As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufact...As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufacturing, transportation and/or storage of the plates. General corrosion often takes place on the surface of a plate in the exterior part of a package, and only reduces the thickness of the plate and slightly increases the roughness of the surface; however, localized corrosion on the surface of a plate inside the package is likely to result in the formation of pit-like defects on the substrate of the plate, which cannot be removed thoroughly by normal acid pickling or sand blasting, and affects the application of the plate. This research report analyzes the phenomena and characteristics of the rusting behavior of hot- rolled steel plates for automobile applications, and the influencing factors are summaried. The corresponding preventative measures are proposed.展开更多
The formation of a rust layer on iron and steels surfaces accelerates their degradation and eventually causes material failure.In addition to fabricating a protective layer or using a sacrificial anode, repairing or r...The formation of a rust layer on iron and steels surfaces accelerates their degradation and eventually causes material failure.In addition to fabricating a protective layer or using a sacrificial anode, repairing or removing the rust layer is another way to reduce the corrosion rate and extend the lifespans of iron and steels.Herein, an electrochemical healing approach was employed to repair the rust layer in molten Na_(2)CO_(3)-K_(2)CO_(3).The rusty layers on iron rods and screws were electrochemically converted to iron in only several minutes and a metallic luster appeared.Scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS) analyses showed that the structures of the rust layer after healing were slightly porous and the oxygen content reached a very low level.Thus, high-temperature molten-salt electrolysis may be an effective way to metalize iron rust of various shapes and structures in a short time, and could be used in the repair of cultural relics and even preparing a three-dimensional porous structures for other applications.展开更多
In this paper,we investigated the shot blast treatment for derusting application through finite element(FE)simulations with a large number of random shots.The element deletion technique based on dynamic failure criter...In this paper,we investigated the shot blast treatment for derusting application through finite element(FE)simulations with a large number of random shots.The element deletion technique based on dynamic failure criteria was used to model the removal of rust.The cohesive surface model with damage evolution was used to characterize the decohesion of the rust/substrate interface.The effects of various processing and material parameters on the derusting effectiveness were examined.The results show that the rate of derusting mainly depends on the shot size,velocity and impinging angle,with little relevance to the rust thickness.The spalling of the rust fragments resulted from the decohesion of the rust/substrate interface were observed,especially during the later stage of the treatment.Furthermore,the residual stress and the surface roughness was also investigated and the beneficial effects of shot blast treatment in terms of these aspects were highlighted.展开更多
Stripe (yellow) rust, caused by Puccinia striiformis Westend. f. sp. tritici Eriks (Pst), is one of the most important wheat (Triticum aestivum L.) diseases and causes significant yield losses. A recombinant inb...Stripe (yellow) rust, caused by Puccinia striiformis Westend. f. sp. tritici Eriks (Pst), is one of the most important wheat (Triticum aestivum L.) diseases and causes significant yield losses. A recombinant inbred (RI) population derived from a cross between Yanzhan 1 and Xichang 76-9 cultivars was evaluated for resistance to wheat stripe rust strain CYR32 at both the seedling and adult plant stages. Four resistance quantitative trait loci (QTLs) were detected in this population, in which the major one, designated as Yrql, was mapped on chromosome 2DS. The strategy of using the Brachypodium distachyon genome, wheat expressed sequence tags and a draft DNA sequences (scaffolds) of the D-genome (Aegilops tauschfi Coss.) for the development of simple sequence repeat (SSR) markers was successfully used to identify 147 SSRs in hexaploid wheat. Of the 19 polymorphic SSRs in the RI population, 17 SSRs were mapped in the homeologous group 2 chromosomes near Yrql region and eight SSRs were genetically mapped in the 2.7 cM region of Yrql, providing abundant DNA markers for fine-mapping of Yrql and marker-assisted selection in wheat breeding program. The effectiveness of Yrql was validated in an independent population, indicating that this resistance QTL can be successfully transferred into a susceptible cultivar for improvement of stripe rust resistance.展开更多
Wheat stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is one of the most destructive fungal diseases of wheat,and seriously threatens safe production of the crop worldwide.In China,new races historically ...Wheat stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is one of the most destructive fungal diseases of wheat,and seriously threatens safe production of the crop worldwide.In China,new races historically appeared and rapidly developed to be predominant races and have resulted in ineffectiveness and replacement of wheat resistance cultivars as well as massive reduction in yield.In the present study,the relative parasitic fitness of the two newlyemerged Yr5-virulent races(TSA-6 and TSA-9)were compared with those of four currently predominant Chinese races(CYR31,CYR32,CYR33,and CYR34)based on evaluation on 10 Chinese wheat cultivars.As a result,there were significant differences in the relative parasitic fitness parameters among overall tested races based on multiple comparison(LSD)analysis(P<0.05).The principal component analysis(PCA)of overall parasitic fitness parameters indicated that the sporulation ability,infection and spore survivability,expansion capacity,and potential pathogenicity were the most important parasitic fitness attributes of the tested races.Based on the establishment of extracted three principal components and a comprehensive factor score mathematical models,evaluations of the parasitic fitness attributes of tested races showed that the level of relative parasitic fitness of the tested six races was:CYR32(1.15)>TSA-9(0.95)>TSA-6(0.92)>CYR34(0.29)>CYR31(–1.54)>CYR33(–1.77).The results indicated that two Yr5-virulent races TSA-9 and TSA-6 possessed relative parasitic fitness higher than races CYR34,CYR31,and CYR33,but lower than race CYR32,and have potential risks in developing to be predominant races.Therefore,continual monitoring of both Yr5-virulent races,and their variants is needed.The use of wheat cultivars(lines)with Yr5 resistance gene singly in wheat breeding is essential for being avoided,and is suggested to combine with other effective stripe rust resistance genes.展开更多
Coffee Leaf Rust(CLR)is caused by Hemileia vastatrix in Coffea spp.It is one of the most dangerous phytopathogens for coffee plantations in terms of coffee productivity and coffee cup quality.In this review,we resume ...Coffee Leaf Rust(CLR)is caused by Hemileia vastatrix in Coffea spp.It is one of the most dangerous phytopathogens for coffee plantations in terms of coffee productivity and coffee cup quality.In this review,we resume the problem of CLR in Mexico and the pathogenesis of H.vastatrix.The review abord plant-pathogen interactions which lead a compatible or incompatible interactions and result in CLR disease or resistance,respectively.The review abord Coffea spp.defense response pathways involved in H.vastatrix pathogenicity.Additionally,current measures to control H.vastatrix proliferation and germination were aborded focused on phytosanitary actions,and biological and chemical control.Finally,new trendlines to reduce the impact of CLR as nanoparticles and nanotechnology were analyzed.展开更多
[Objectives]The paper was to elucidate the specific hyperparasitic fungal species that are associated with coffee leaf rust.[Methods]Tissue isolation,sample humidification,and three-point inoculation techniques were e...[Objectives]The paper was to elucidate the specific hyperparasitic fungal species that are associated with coffee leaf rust.[Methods]Tissue isolation,sample humidification,and three-point inoculation techniques were employed to isolate,culture,and purify the hyperparasitic fungi responsible for coffee leaf rust.The purified strains were identified using traditional morphological techniques and molecular biology methods.[Results]Four strains were isolated,specifically BS21(Cladosporium cladosporioides),BS34(C.tenuissimum),BS62(C.cladosporioides),and BS75(C.colombiae).[Conclusions]The findings of this research will contribute novel insights into the biological control of coffee leaf rust.展开更多
[Objectives]The paper was to evaluate the effectiveness of Xiulijing in the management of rust in Golden Delicious apple cultivation.[Methods]The Golden Delicious apple was utilized as the test material.During the you...[Objectives]The paper was to evaluate the effectiveness of Xiulijing in the management of rust in Golden Delicious apple cultivation.[Methods]The Golden Delicious apple was utilized as the test material.During the young fruit stage,various dilutions of Xiulijing were applied,specifically at concentrations of 200,400,600,800,1000,and 2000 times.Additionally,both the application of a 3000-fold dilution of GA 4+7 and the practice of fruit bagging were designated as the control treatments,while a water spray was utilized as the blank control.The fruit rust index and the incidence of rust-infected fruits were evaluated to assess the effectiveness of control measures for fruit rust in Golden Delicious apple cultivation.[Results]The application of Xiulijing,with dilutions ranging from 200 to 2000 times,exhibited a significant impact on reducing both the fruit rust index and the incidence of rust-infected fruits in Golden Delicious apples.The application of a 1000-fold dilution of Xiulijing resulted in a statistically significant reduction in both the fruit rust index and the incidence of rust-infected fruits,with reduction rates of 21.1%and 31.5%,respectively.Among the various strategies for the prevention and control of apple rust,fruit bagging emerged as the most effective method.The other two technical measures demonstrated significant control effects;however,no substantial differences were observed between them.[Conclusions]The biological control agent Xiulijing is more deserving of promotion and application in practical production due to its significantly superior economic benefits,safety,and stability.展开更多
This paper investigates the damage symptoms and occurrence regularity related to coffee leaf rust,and proposes a comprehensive prevention and control strategy grounded in the principle of prioritizing prevention and i...This paper investigates the damage symptoms and occurrence regularity related to coffee leaf rust,and proposes a comprehensive prevention and control strategy grounded in the principle of prioritizing prevention and implementing integrated prevention and control.This strategy encompasses the cultivation of rust-resistant varieties,the implementation of agricultural practices,the application of chemical interventions,the utilization of hyperparasitic fungi,and the protection and utilization of natural enemies.The paper further outlines the necessary requirements for effective prevention and control,emphasizing the importance of enhancing responsibility implementation,fostering systematic prevention and control measures,enhancing guidance services,and increasing publicity and guidance.The aim is to offer technical guidance for the integrated prevention and control of coffee leaf rust in Yunnan Province.展开更多
The adoption of Docker containers has revolutionized software deployment by providing a lightweight and efficient way to isolate applications in data centers. However, securing these containers, especially when handli...The adoption of Docker containers has revolutionized software deployment by providing a lightweight and efficient way to isolate applications in data centers. However, securing these containers, especially when handling sensitive data, poses significant challenges. Traditional Linux Security Modules (LSMs) such as SELinux and AppArmor have limitations in providing fine-grained access control to files within containers. This paper presents a novel approach using eBPF (extended Berkeley Packet Filter) to implement a LSM that focuses on file-oriented access control within Docker containers. The module allows the specification of policies that determine which programs can access sensitive files, providing enhanced security without relying solely on the host operating system’s major LSM.展开更多
Stripe rust, caused by Puccinia striiformis f. sp. tritici(Pst), threatens wheat production worldwide, and resistant varieties tend to become susceptible after a period of cultivation owing to the variation of pathoge...Stripe rust, caused by Puccinia striiformis f. sp. tritici(Pst), threatens wheat production worldwide, and resistant varieties tend to become susceptible after a period of cultivation owing to the variation of pathogen races. In this study, a new resistance gene against Pst race CYR34 was identified and predicted using the descendants of a cross between AS1676, a highly resistant Chinese landrace, and Avocet S, a susceptible cultivar. From a heterozygous plant from a F7recombinant inbred line(RIL) population lacking the Yr18 gene, a near-isogenic line(NIL) population was developed to map the resistance gene. An allstage resistance gene, YrAS1676, was identified on chromosome arm 1AL via bulked-segregant exomecapture sequencing. By analyzing a large NIL population consisting of 6537 plants, the gene was further mapped to the marker interval between KA1A_485.36 and KA1A_490.13, spanning 485.36–490.13 Mb on1AL. A total of 66 annotated genes have been reported in this region. To characterize and predict the candidate gene(s), an RNA-seq was performed using NIL-R and NIL-S seedlings 3 days after CYR34 inoculation. Compared to NIL-S plants, NIL-R plants showed stronger immune reaction and higher expression levels of genes encoding pathogenesis-associated proteins. These differences may help to explain why NIL-R plants were more resistant to Pst race CYR34 than NIL-S plants. By combining fine-mapping and transcriptome sequencing, a calcium-dependent protein kinase gene was finally predicted as the potential candidate gene of YrAS1676. This gene contained a single-nucleotide polymorphism. The candidate gene was more highly expressed in NIL-R than in NIL-S plants. In field experiments with Pst challenge,the YrAS1676 genotype showed mitigation of disease damage and yield loss without adverse effects on tested agronomic traits. These results suggest that YrAS1676 has potential use in wheat stripe rust resistance breeding.展开更多
Wheat stem rust, caused by Puccinia graminis f. sp. tritici(Pgt), is a potentially devastating fungal disease of wheat worldwide. The present study was to evaluate the resistance of 42 wheat monogenic lines with known...Wheat stem rust, caused by Puccinia graminis f. sp. tritici(Pgt), is a potentially devastating fungal disease of wheat worldwide. The present study was to evaluate the resistance of 42 wheat monogenic lines with known stem rust resistance(Sr) genes and 69 wheat cultivars to three new Pgt races(34C0MRGQM, 34C3MKGQM, and 34C6MTGSM)identified from aeciospores at the seedling and adult-plant stages. The phenotyping results revealed that monogenic lines harboring resistance genes Sr9e, Sr17, Sr21, Sr22, Sr26, Sr30, Sr31, Sr33, Sr35, Sr36, Sr37, Sr38, Sr47, SrTmp,and SrTt3 were effectively resistant to all three Pgt races at the seedling and adult-plant stages. In contrast, monogenic lines containing Sr5, Sr6, Sr7b, Sr9a, Sr9d, Sr9f, Sr9g, Sr9b, Sr16, Sr24, Sr28, and Sr39 were highly susceptible to these races at both seedling and adult-plant stages. The other lines with Sr8a, Sr10, Sr11, Sr13, Sr14, Sr15, Sr18, Sr20,Sr19, Sr23, Sr25, Sr27, Sr29, Sr32, and Sr34, displayed variable levels of resistance to one or two of the tested races.Seedling infection types(ITs) and adult-plant infection responses(IRs) indicated that 41(59.4%) of the wheat cultivars showed high resistance to all the three races. Molecular marker analysis showed that four wheat culitvars likely carried Sr2, 20 wheat culitvars likely carried Sr31, 9 wheat culitvars likely carried Sr38, and none of the cultivars carried Sr24,Sr25, and Sr26. Our results provide a scientific basis for rational utilization of the tested Sr genes and wheat cultivars against these novel Pgt races.展开更多
Green rusts with brucite-like layers of hydroxide intercalated with anions constitute a family of diverse precursors for the synthesis of iron oxides via dehydration,but precise structural control of the resulting oxi...Green rusts with brucite-like layers of hydroxide intercalated with anions constitute a family of diverse precursors for the synthesis of iron oxides via dehydration,but precise structural control of the resulting oxides with respect to the size and shape at the nanometer level remains challenging due to the easy oxidation of the ferrous species.Herein,we report a new synthetic strategy for the facile preparation of fibrous-like green rusts by using appropriate balancing anions(CO_(3)^(2-)and SO_(4)^(2-))in ethylene glycol to regulate the morphology.Depending on the type of the intercalating anion,the green rusts were converted into hematite with fibrous-or plate-like shapes upon thermal activation.When evaluated in the reaction of NO reduction by CO,these iron oxides showed a prominent shape-dependent catalytic behavior.The fibrous-like Fe_(2)O_(3)was much more catalytically active and structurally robust than the plate-like analogue.Combined spectroscopic and microscopic characterizations on the nanostructured iron oxides revealed that the superior performance of the fibrous-like Fe_(2)O_(3)stemmed from a facile Fe_(2)O_(3)/Fe_(3)O_(4)redox cycle and a higher density of active sites for NO activation.展开更多
Stem rust,caused by Puccinia graminis f.sp.tritici(Pgt),threatens global wheat production.Development of cultivars with increased resistance to stem rust by identification,mapping,and deployment of resistance genes is...Stem rust,caused by Puccinia graminis f.sp.tritici(Pgt),threatens global wheat production.Development of cultivars with increased resistance to stem rust by identification,mapping,and deployment of resistance genes is the best strategy for controlling the disease.In this study,we performed fine mapping and characterization of the all-stage stem rust resistance(Sr)gene Sr8155B1 from the durum wheat line 8155-B1.In seedling tests of biparental populations,Sr8155B1 was effective against six Chinese Pgt races tested.In a segregating population of 5060 gametes,Sr8155B1 was mapped to a 0.06-cM region flanked by markers Pku2772 and Pku43365,corresponding to 1.5-and 2.7-Mb regions in the Svevo and Chinese Spring reference genomes.Both regions include several typical nucleotide-binding leucine-rich repeat(NLR)and protein kinase genes that represent candidate genes.Among them,three NLR genes and three receptor-like protein kinases were highly polymorphic between the parental lines and their transcripts were upregulated in the homozygous resistant line TdR2 relative to its susceptible sister line TdS4.Four markers(Pku2772,Pku43365,Pku2950,and Pku3721)developed in this study,together with seedling resistance responses,correctly predicted Sr8155B1 absence or presence in 78 tetraploid wheat genotypes tested.The presence of Sr8155B1 in tetraploid wheat accessions CItr 14916,PI 197492,and PI 197493 was confirmed by mapping in three F_(2)populations.The genetic map and linked markers developed in this study may accelerate the deployment of Sr8155B1-mediated resistance in wheat breeding programs.展开更多
Aegilops umbellulata(UU)is a wheat wild relative that has potential use in the genetic improvement of wheat.In this study,46 Ae.umbellulata accessions were investigated for stripe rust resistance,heading date(HD),and ...Aegilops umbellulata(UU)is a wheat wild relative that has potential use in the genetic improvement of wheat.In this study,46 Ae.umbellulata accessions were investigated for stripe rust resistance,heading date(HD),and the contents of iron(Fe),zinc(Zn),and seed gluten proteins.Forty-two of the accessions were classified as resistant to stripe rust,while the other four accessions were classified as susceptible to stripe rust in four environments.The average HD of Ae.umbellulata was significantly longer than that of three common wheat cultivars(180.9 d vs.137.0 d),with the exception of PI226500(138.9 d).The Ae.umbellulata accessions also showed high variability in Fe(69.74-348.09 mg kg^(-1))and Zn(49.83-101.65 mg kg^(-1))contents.Three accessions(viz.,PI542362,PI542363,and PI554399)showed relatively higher Fe(230.96-348.09 mg kg^(-1))and Zn(92.46-101.65 mg kg^(-1))contents than the others.The Fe content of Ae.umbellulata was similar to those of Ae.comosa and Ae.markgrafii but higher than those of Ae.tauschii and common wheat.Aegilops umbellulata showed a higher Zn content than Ae.tauschii,Ae.comosa,and common wheat,but a lower content than Ae.markgrafii.Furthermore,Ae.umbellulata had the highest proportion of γ-gliadin among all the species investigated(Ae.umbellulata vs.other species=mean 72.11%vs.49.37%;range:55.33-86.99%vs.29.60-67.91%).These results demonstrated that Ae.umbellulata exhibits great diversity in the investigated traits,so it can provide a potential gene pool for the genetic improvement of these traits in wheat.展开更多
文摘When a steel plate produced by a steel plant leaves the factory,its upper surface should be marked with the specification,variety,batch number,and other identifying information,and its side should be marked with a side marking.The side marking contains the plate number,specification,batch number,and other information,which are convenient for customers to accurately identify relevant information after stacking.However,because of the influence of weather,environment,and other factors,the side marking becomes unidentifiable when the steel plate is corroded,affecting the customer’s loading,unloading,and other operations.The development and application of side anticorrosion devices and cleaning of finished heavy steel plates with antirust agents will solve the problem of unrecognizable side marking due to corrosion.
文摘As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufacturing, transportation and/or storage of the plates. General corrosion often takes place on the surface of a plate in the exterior part of a package, and only reduces the thickness of the plate and slightly increases the roughness of the surface; however, localized corrosion on the surface of a plate inside the package is likely to result in the formation of pit-like defects on the substrate of the plate, which cannot be removed thoroughly by normal acid pickling or sand blasting, and affects the application of the plate. This research report analyzes the phenomena and characteristics of the rusting behavior of hot- rolled steel plates for automobile applications, and the influencing factors are summaried. The corresponding preventative measures are proposed.
基金financially supported by the Fundamental Research Funds for the Central Universities (No.N172505002)the National Natural Science Foundation of China (No.51704060)+1 种基金the National Thousand Youth Talent Program of Chinathe 111 Project (No.B16009)。
文摘The formation of a rust layer on iron and steels surfaces accelerates their degradation and eventually causes material failure.In addition to fabricating a protective layer or using a sacrificial anode, repairing or removing the rust layer is another way to reduce the corrosion rate and extend the lifespans of iron and steels.Herein, an electrochemical healing approach was employed to repair the rust layer in molten Na_(2)CO_(3)-K_(2)CO_(3).The rusty layers on iron rods and screws were electrochemically converted to iron in only several minutes and a metallic luster appeared.Scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS) analyses showed that the structures of the rust layer after healing were slightly porous and the oxygen content reached a very low level.Thus, high-temperature molten-salt electrolysis may be an effective way to metalize iron rust of various shapes and structures in a short time, and could be used in the repair of cultural relics and even preparing a three-dimensional porous structures for other applications.
基金This work was supported by National Natural Science Foundation of China under Grant 11772231Innovation Program of Shanghai Municipal Education Commission under Grant 15zz018the Fundamental Research Funds for the Central Universities under Grant 1500219095,and Shanghai Supercomputer Center.
文摘In this paper,we investigated the shot blast treatment for derusting application through finite element(FE)simulations with a large number of random shots.The element deletion technique based on dynamic failure criteria was used to model the removal of rust.The cohesive surface model with damage evolution was used to characterize the decohesion of the rust/substrate interface.The effects of various processing and material parameters on the derusting effectiveness were examined.The results show that the rate of derusting mainly depends on the shot size,velocity and impinging angle,with little relevance to the rust thickness.The spalling of the rust fragments resulted from the decohesion of the rust/substrate interface were observed,especially during the later stage of the treatment.Furthermore,the residual stress and the surface roughness was also investigated and the beneficial effects of shot blast treatment in terms of these aspects were highlighted.
基金supported in part by the State Key Basic Research and Development Plan of China (2011CB100700 and 2009CB118306)National Transgenic Megaproject of China(2009ZX08009-053B and 2008ZX08009-001)the "One Hundred Talents" Foundation of the Chinese Academy of Sciences
文摘Stripe (yellow) rust, caused by Puccinia striiformis Westend. f. sp. tritici Eriks (Pst), is one of the most important wheat (Triticum aestivum L.) diseases and causes significant yield losses. A recombinant inbred (RI) population derived from a cross between Yanzhan 1 and Xichang 76-9 cultivars was evaluated for resistance to wheat stripe rust strain CYR32 at both the seedling and adult plant stages. Four resistance quantitative trait loci (QTLs) were detected in this population, in which the major one, designated as Yrql, was mapped on chromosome 2DS. The strategy of using the Brachypodium distachyon genome, wheat expressed sequence tags and a draft DNA sequences (scaffolds) of the D-genome (Aegilops tauschfi Coss.) for the development of simple sequence repeat (SSR) markers was successfully used to identify 147 SSRs in hexaploid wheat. Of the 19 polymorphic SSRs in the RI population, 17 SSRs were mapped in the homeologous group 2 chromosomes near Yrql region and eight SSRs were genetically mapped in the 2.7 cM region of Yrql, providing abundant DNA markers for fine-mapping of Yrql and marker-assisted selection in wheat breeding program. The effectiveness of Yrql was validated in an independent population, indicating that this resistance QTL can be successfully transferred into a susceptible cultivar for improvement of stripe rust resistance.
基金supported by the National Natural Science Foundation of China(32072358 and 32272507)the National Key R&D Program of China(2021YFD1401000)+1 种基金the earmarked fund for CARS-03,the Natural Science Basic Research Project in Shaanxi Province of China(2020JZ-15)National“111 Project”of China(BP0719026)。
文摘Wheat stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is one of the most destructive fungal diseases of wheat,and seriously threatens safe production of the crop worldwide.In China,new races historically appeared and rapidly developed to be predominant races and have resulted in ineffectiveness and replacement of wheat resistance cultivars as well as massive reduction in yield.In the present study,the relative parasitic fitness of the two newlyemerged Yr5-virulent races(TSA-6 and TSA-9)were compared with those of four currently predominant Chinese races(CYR31,CYR32,CYR33,and CYR34)based on evaluation on 10 Chinese wheat cultivars.As a result,there were significant differences in the relative parasitic fitness parameters among overall tested races based on multiple comparison(LSD)analysis(P<0.05).The principal component analysis(PCA)of overall parasitic fitness parameters indicated that the sporulation ability,infection and spore survivability,expansion capacity,and potential pathogenicity were the most important parasitic fitness attributes of the tested races.Based on the establishment of extracted three principal components and a comprehensive factor score mathematical models,evaluations of the parasitic fitness attributes of tested races showed that the level of relative parasitic fitness of the tested six races was:CYR32(1.15)>TSA-9(0.95)>TSA-6(0.92)>CYR34(0.29)>CYR31(–1.54)>CYR33(–1.77).The results indicated that two Yr5-virulent races TSA-9 and TSA-6 possessed relative parasitic fitness higher than races CYR34,CYR31,and CYR33,but lower than race CYR32,and have potential risks in developing to be predominant races.Therefore,continual monitoring of both Yr5-virulent races,and their variants is needed.The use of wheat cultivars(lines)with Yr5 resistance gene singly in wheat breeding is essential for being avoided,and is suggested to combine with other effective stripe rust resistance genes.
文摘Coffee Leaf Rust(CLR)is caused by Hemileia vastatrix in Coffea spp.It is one of the most dangerous phytopathogens for coffee plantations in terms of coffee productivity and coffee cup quality.In this review,we resume the problem of CLR in Mexico and the pathogenesis of H.vastatrix.The review abord plant-pathogen interactions which lead a compatible or incompatible interactions and result in CLR disease or resistance,respectively.The review abord Coffea spp.defense response pathways involved in H.vastatrix pathogenicity.Additionally,current measures to control H.vastatrix proliferation and germination were aborded focused on phytosanitary actions,and biological and chemical control.Finally,new trendlines to reduce the impact of CLR as nanoparticles and nanotechnology were analyzed.
基金Supported by Yunnan Fundamental Research Projects(202301BD070001-076)Innovation Guidance and Technology-based Enterprise Cultivation Program of Yunnan Science and Technology Project(202304BP090027)Science and Technology Program of Baoshan City(2022zc01).
文摘[Objectives]The paper was to elucidate the specific hyperparasitic fungal species that are associated with coffee leaf rust.[Methods]Tissue isolation,sample humidification,and three-point inoculation techniques were employed to isolate,culture,and purify the hyperparasitic fungi responsible for coffee leaf rust.The purified strains were identified using traditional morphological techniques and molecular biology methods.[Results]Four strains were isolated,specifically BS21(Cladosporium cladosporioides),BS34(C.tenuissimum),BS62(C.cladosporioides),and BS75(C.colombiae).[Conclusions]The findings of this research will contribute novel insights into the biological control of coffee leaf rust.
文摘[Objectives]The paper was to evaluate the effectiveness of Xiulijing in the management of rust in Golden Delicious apple cultivation.[Methods]The Golden Delicious apple was utilized as the test material.During the young fruit stage,various dilutions of Xiulijing were applied,specifically at concentrations of 200,400,600,800,1000,and 2000 times.Additionally,both the application of a 3000-fold dilution of GA 4+7 and the practice of fruit bagging were designated as the control treatments,while a water spray was utilized as the blank control.The fruit rust index and the incidence of rust-infected fruits were evaluated to assess the effectiveness of control measures for fruit rust in Golden Delicious apple cultivation.[Results]The application of Xiulijing,with dilutions ranging from 200 to 2000 times,exhibited a significant impact on reducing both the fruit rust index and the incidence of rust-infected fruits in Golden Delicious apples.The application of a 1000-fold dilution of Xiulijing resulted in a statistically significant reduction in both the fruit rust index and the incidence of rust-infected fruits,with reduction rates of 21.1%and 31.5%,respectively.Among the various strategies for the prevention and control of apple rust,fruit bagging emerged as the most effective method.The other two technical measures demonstrated significant control effects;however,no substantial differences were observed between them.[Conclusions]The biological control agent Xiulijing is more deserving of promotion and application in practical production due to its significantly superior economic benefits,safety,and stability.
基金Supported by Innovation Guidance and Technology-based Enterprise Cultivation Program of Yunnan Science and Technology Project(202304BP090027).
文摘This paper investigates the damage symptoms and occurrence regularity related to coffee leaf rust,and proposes a comprehensive prevention and control strategy grounded in the principle of prioritizing prevention and implementing integrated prevention and control.This strategy encompasses the cultivation of rust-resistant varieties,the implementation of agricultural practices,the application of chemical interventions,the utilization of hyperparasitic fungi,and the protection and utilization of natural enemies.The paper further outlines the necessary requirements for effective prevention and control,emphasizing the importance of enhancing responsibility implementation,fostering systematic prevention and control measures,enhancing guidance services,and increasing publicity and guidance.The aim is to offer technical guidance for the integrated prevention and control of coffee leaf rust in Yunnan Province.
文摘The adoption of Docker containers has revolutionized software deployment by providing a lightweight and efficient way to isolate applications in data centers. However, securing these containers, especially when handling sensitive data, poses significant challenges. Traditional Linux Security Modules (LSMs) such as SELinux and AppArmor have limitations in providing fine-grained access control to files within containers. This paper presents a novel approach using eBPF (extended Berkeley Packet Filter) to implement a LSM that focuses on file-oriented access control within Docker containers. The module allows the specification of policies that determine which programs can access sensitive files, providing enhanced security without relying solely on the host operating system’s major LSM.
基金supported by the Major Program of National Agricultural Science and Technology of China (NK20220607)the National Natural Science Foundation of China (32272059 and31971883)the Science and Technology Department of Sichuan Province (2022ZDZX0014, 2021YFYZ0002, 2021YJ0297, and23NSFTD0045)。
文摘Stripe rust, caused by Puccinia striiformis f. sp. tritici(Pst), threatens wheat production worldwide, and resistant varieties tend to become susceptible after a period of cultivation owing to the variation of pathogen races. In this study, a new resistance gene against Pst race CYR34 was identified and predicted using the descendants of a cross between AS1676, a highly resistant Chinese landrace, and Avocet S, a susceptible cultivar. From a heterozygous plant from a F7recombinant inbred line(RIL) population lacking the Yr18 gene, a near-isogenic line(NIL) population was developed to map the resistance gene. An allstage resistance gene, YrAS1676, was identified on chromosome arm 1AL via bulked-segregant exomecapture sequencing. By analyzing a large NIL population consisting of 6537 plants, the gene was further mapped to the marker interval between KA1A_485.36 and KA1A_490.13, spanning 485.36–490.13 Mb on1AL. A total of 66 annotated genes have been reported in this region. To characterize and predict the candidate gene(s), an RNA-seq was performed using NIL-R and NIL-S seedlings 3 days after CYR34 inoculation. Compared to NIL-S plants, NIL-R plants showed stronger immune reaction and higher expression levels of genes encoding pathogenesis-associated proteins. These differences may help to explain why NIL-R plants were more resistant to Pst race CYR34 than NIL-S plants. By combining fine-mapping and transcriptome sequencing, a calcium-dependent protein kinase gene was finally predicted as the potential candidate gene of YrAS1676. This gene contained a single-nucleotide polymorphism. The candidate gene was more highly expressed in NIL-R than in NIL-S plants. In field experiments with Pst challenge,the YrAS1676 genotype showed mitigation of disease damage and yield loss without adverse effects on tested agronomic traits. These results suggest that YrAS1676 has potential use in wheat stripe rust resistance breeding.
文摘Wheat stem rust, caused by Puccinia graminis f. sp. tritici(Pgt), is a potentially devastating fungal disease of wheat worldwide. The present study was to evaluate the resistance of 42 wheat monogenic lines with known stem rust resistance(Sr) genes and 69 wheat cultivars to three new Pgt races(34C0MRGQM, 34C3MKGQM, and 34C6MTGSM)identified from aeciospores at the seedling and adult-plant stages. The phenotyping results revealed that monogenic lines harboring resistance genes Sr9e, Sr17, Sr21, Sr22, Sr26, Sr30, Sr31, Sr33, Sr35, Sr36, Sr37, Sr38, Sr47, SrTmp,and SrTt3 were effectively resistant to all three Pgt races at the seedling and adult-plant stages. In contrast, monogenic lines containing Sr5, Sr6, Sr7b, Sr9a, Sr9d, Sr9f, Sr9g, Sr9b, Sr16, Sr24, Sr28, and Sr39 were highly susceptible to these races at both seedling and adult-plant stages. The other lines with Sr8a, Sr10, Sr11, Sr13, Sr14, Sr15, Sr18, Sr20,Sr19, Sr23, Sr25, Sr27, Sr29, Sr32, and Sr34, displayed variable levels of resistance to one or two of the tested races.Seedling infection types(ITs) and adult-plant infection responses(IRs) indicated that 41(59.4%) of the wheat cultivars showed high resistance to all the three races. Molecular marker analysis showed that four wheat culitvars likely carried Sr2, 20 wheat culitvars likely carried Sr31, 9 wheat culitvars likely carried Sr38, and none of the cultivars carried Sr24,Sr25, and Sr26. Our results provide a scientific basis for rational utilization of the tested Sr genes and wheat cultivars against these novel Pgt races.
基金Zhejiang Normal University for providing the financial support(YS304320035)。
文摘Green rusts with brucite-like layers of hydroxide intercalated with anions constitute a family of diverse precursors for the synthesis of iron oxides via dehydration,but precise structural control of the resulting oxides with respect to the size and shape at the nanometer level remains challenging due to the easy oxidation of the ferrous species.Herein,we report a new synthetic strategy for the facile preparation of fibrous-like green rusts by using appropriate balancing anions(CO_(3)^(2-)and SO_(4)^(2-))in ethylene glycol to regulate the morphology.Depending on the type of the intercalating anion,the green rusts were converted into hematite with fibrous-or plate-like shapes upon thermal activation.When evaluated in the reaction of NO reduction by CO,these iron oxides showed a prominent shape-dependent catalytic behavior.The fibrous-like Fe_(2)O_(3)was much more catalytically active and structurally robust than the plate-like analogue.Combined spectroscopic and microscopic characterizations on the nanostructured iron oxides revealed that the superior performance of the fibrous-like Fe_(2)O_(3)stemmed from a facile Fe_(2)O_(3)/Fe_(3)O_(4)redox cycle and a higher density of active sites for NO activation.
基金the National Key Research and Development Program of China(2022YFD1201300)the Key R&D Program of Shandong Province(ZR202211070163)+1 种基金the Provincial Natural Science Foundation of Shandong(ZR2021ZD30,ZR2021MC056)the Young Taishan Scholars Program of Shandong Province.
文摘Stem rust,caused by Puccinia graminis f.sp.tritici(Pgt),threatens global wheat production.Development of cultivars with increased resistance to stem rust by identification,mapping,and deployment of resistance genes is the best strategy for controlling the disease.In this study,we performed fine mapping and characterization of the all-stage stem rust resistance(Sr)gene Sr8155B1 from the durum wheat line 8155-B1.In seedling tests of biparental populations,Sr8155B1 was effective against six Chinese Pgt races tested.In a segregating population of 5060 gametes,Sr8155B1 was mapped to a 0.06-cM region flanked by markers Pku2772 and Pku43365,corresponding to 1.5-and 2.7-Mb regions in the Svevo and Chinese Spring reference genomes.Both regions include several typical nucleotide-binding leucine-rich repeat(NLR)and protein kinase genes that represent candidate genes.Among them,three NLR genes and three receptor-like protein kinases were highly polymorphic between the parental lines and their transcripts were upregulated in the homozygous resistant line TdR2 relative to its susceptible sister line TdS4.Four markers(Pku2772,Pku43365,Pku2950,and Pku3721)developed in this study,together with seedling resistance responses,correctly predicted Sr8155B1 absence or presence in 78 tetraploid wheat genotypes tested.The presence of Sr8155B1 in tetraploid wheat accessions CItr 14916,PI 197492,and PI 197493 was confirmed by mapping in three F_(2)populations.The genetic map and linked markers developed in this study may accelerate the deployment of Sr8155B1-mediated resistance in wheat breeding programs.
基金supported by the National Natural Science Foundation of China(31771783)the Key Research and Development Program of Sichuan Province,China(2021YFYZ0002)the Sichuan Science and Technology Program,China(2018HH0130 and 2022YFH0105)。
文摘Aegilops umbellulata(UU)is a wheat wild relative that has potential use in the genetic improvement of wheat.In this study,46 Ae.umbellulata accessions were investigated for stripe rust resistance,heading date(HD),and the contents of iron(Fe),zinc(Zn),and seed gluten proteins.Forty-two of the accessions were classified as resistant to stripe rust,while the other four accessions were classified as susceptible to stripe rust in four environments.The average HD of Ae.umbellulata was significantly longer than that of three common wheat cultivars(180.9 d vs.137.0 d),with the exception of PI226500(138.9 d).The Ae.umbellulata accessions also showed high variability in Fe(69.74-348.09 mg kg^(-1))and Zn(49.83-101.65 mg kg^(-1))contents.Three accessions(viz.,PI542362,PI542363,and PI554399)showed relatively higher Fe(230.96-348.09 mg kg^(-1))and Zn(92.46-101.65 mg kg^(-1))contents than the others.The Fe content of Ae.umbellulata was similar to those of Ae.comosa and Ae.markgrafii but higher than those of Ae.tauschii and common wheat.Aegilops umbellulata showed a higher Zn content than Ae.tauschii,Ae.comosa,and common wheat,but a lower content than Ae.markgrafii.Furthermore,Ae.umbellulata had the highest proportion of γ-gliadin among all the species investigated(Ae.umbellulata vs.other species=mean 72.11%vs.49.37%;range:55.33-86.99%vs.29.60-67.91%).These results demonstrated that Ae.umbellulata exhibits great diversity in the investigated traits,so it can provide a potential gene pool for the genetic improvement of these traits in wheat.