期刊文献+
共找到10,463篇文章
< 1 2 250 >
每页显示 20 50 100
Diagenetic evolution and reservoir quality of the Oligocene sandstones in the Baiyun Sag, Pearl River Mouth Basin, South China Sea
1
作者 Bing Tian Shanshan Zuo +3 位作者 Youwei Zheng Jie Zhang Jiayu Du Jun Tang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第2期67-82,共16页
The Oligocene Zhuhai sandstones are significant reservoirs for hydrocarbons in the Baiyun Sag, South China Sea.For effective appraisal, exploration and exploitation of such a deep-water hydrocarbon sandstone, samples ... The Oligocene Zhuhai sandstones are significant reservoirs for hydrocarbons in the Baiyun Sag, South China Sea.For effective appraisal, exploration and exploitation of such a deep-water hydrocarbon sandstone, samples of five wells from depths of 850 m to 3 000 m were studied. A series of comprehensive petrographic and geochemical analyses were performed to unravel the diagenetic features and their impact on the reservoir quality.Petrographically, the sandstones are dominated by feldspathic litharenites and lithic arenites with fine to medium grain sizes and moderate to good sorting. The reservoir quality varies greatly with a range of porosity from 0.2% to 36.1% and permeability from 0.016 ×10~(–3) μm~2 to 4 301 ×10~(–3) μm~2, which is attributed to complex diagenetic evolution related to sedimentary facies;these include compaction, cementation of calcite, dolomite, siderite and framboidal pyrite in eogenetic stage;further compaction, feldspar dissolution, precipitation of ferrocalcite and ankerite, quartz cements, formation of kaolinite and its illitization, precipitation of albite and nodular pyrite, as well as hydrocarbon charge in mesogenetic stage. The dissolution of feldspar and illitization of kaolinite provide internal sources for the precipitation of quartz cement, while carbonate cements are derived from external sources related to interbedded mudstones and deep fluid. Compaction is the predominant factor in reducing the total porosity, followed by carbonate cementation that leads to strong heterogeneity. Feldspar dissolution and concomitant quartz and clay cementation barely changes the porosity but significantly reduces the permeability.The high-quality reservoirs can be concluded as medium-grained sandstones lying in the central parts of thick underwater distributary channel sandbodies(>2 m) with a high content of detrital quartz but low cement. 展开更多
关键词 Baiyun sag OLIGOCENE Zhuhai Formation DIAGENESIS reservoir quality
下载PDF
Paleoenvironmental Characteristics of Paleogene Lacustrine Source Rocks in the Western Bozhong Sag,Bohai Bay Basin,China:Evidence from Biomarkers,Major and Trace Elements
2
作者 WANG Xiang LIU Guangdi +6 位作者 SONG Zezhang SUN Mingliang WANG Xiaolin WANG Feilong CHEN Rongtao GENG Mingyang LI Yishu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第1期220-240,共21页
The organic matter(OM)enrichment mechanisms and depositional environment characteristics of lacustrine source rocks in the western Bozhong Sag,Bohai Bay Basin in Northeast China remain controversial.To address these i... The organic matter(OM)enrichment mechanisms and depositional environment characteristics of lacustrine source rocks in the western Bozhong Sag,Bohai Bay Basin in Northeast China remain controversial.To address these issues,based on Rock-Eval pyrolysis,kerogen macerals,H/C and O/C ratios,GC-MS,major and trace elements,the Dongying Formation Member(Mbr)3(E_(3)d_(3)),the Shahejie Formation mbrs 1 and 2(E_(2)s_(1+2)),and the Shahejie Mbr 3(E_(2)s_(3))source rocks in the western Bozhong Sag were studied.The above methods were used to reveal their geochemical properties,OM origins and depositional environments,all of which indicate that E_(2)s_(1+2)and E_(2)s_(3)are excellent source rocks,and that E_(3)d_(3)is of the second good quality.E_(3)d_(3)source rocks were formed under a warm and humid climate,mainly belong to fluvial/delta facies,the E_(3)d_(3)sediments formed under weakly oxidizing and freshwater conditions.Comparatively,the depositional environments of E_(2)s_(1+2)source rocks were arid and cold climate,representing saline or freshwater lacustrine facies,and the sediments of E_(2)s_(1+2)belong to anoxic or suboxic settings with large evaporation and salinity.During the period of E_(2)s_(3),the climate became warm and humid,indicating the freshwater lacustrine facies,and E_(2)s_(3)was characterized by freshwater and abundant algae.Moreover,compared with other intervals,the OM origin of E_(3)d_(3)source rocks has noticeable terrestrial input.The OM origin of the E_(2)s_(1+2)and E_(2)s_(3)are mainly plankton and bacteria.Tectonic subsidence and climate change have affected the changes of the depositional environment in the western Bozhong Sag,thus controlling the distribution of the source rocks,the geochemical characteristics in the three intervals of lacustrine source rocks have distinct differences.Overall,these factors are effective to evaluate the paleoenvironmental characteristics of source rocks by biomarkers,major and trace elements.The established models may have positive implications for research of lacustrine source rocks in offshore areas with few drillings. 展开更多
关键词 petroleum geology source rocks depositional environments biomarkers major elements trace elements Bozhong sag
下载PDF
Geochemical identification of a source rock affected by migrated hydrocarbons and its geological significance:Fengcheng Formation,southern Mahu Sag,Junggar Basin,NW China
3
作者 Wen-Long Dang Gang Gao +5 位作者 Xin-Cai You Ke-Ting Fan Jun Wu De-Wen Lei Wen-Jun He Yong Tang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期100-114,共15页
The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of th... The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation. 展开更多
关键词 Organic geochemistry Source rock Influence of migrated hydrocarbons Fengcheng Formation Southern Mahu sag
下载PDF
Geophysical prediction of organic matter abundance in source rocks based on geochemical analysis:A case study of southwestern Bozhong Sag,Bohai Sea,China
4
作者 Xiang Wang Guang-Di Liu +5 位作者 Xiao-Lin Wang Jin-Feng Ma Zhen-Liang Wang Fei-Long Wang Ze-Zhang Song Chang-Yu Fan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期31-53,共23页
The Bozhong Sag is the largest petroliferous sag in the Bohai Bay Basin,and the source rocks of Paleogene Dongying and Shahejie Formations were buried deeply.Most of the drillings were located at the structural high,a... The Bozhong Sag is the largest petroliferous sag in the Bohai Bay Basin,and the source rocks of Paleogene Dongying and Shahejie Formations were buried deeply.Most of the drillings were located at the structural high,and there were few wells that met good quality source rocks,so it is difficult to evaluate the source rocks in the study area precisely by geochemical analysis only.Based on the Rock-Eval pyrolysis,total organic carbon(TOC)testing,the organic matter(OM)abundance of Paleogene source rocks in the southwestern Bozhong Sag were evaluated,including the lower of second member of Dongying Formation(E_(3)d2L),the third member of Dongying Formation(E_(3)d_(3)),the first and second members of Shahejie Formation(E_(2)s_(1+2)),the third member of Shahejie Formation(E_(2)s_(3)).The results indicate that the E_(2)s_(1+2)and E_(2)s_(3)have better hydrocarbon generative potentials with the highest OM abundance,the E_(3)d_(3)are of the second good quality,and the E_(3)d2L have poor to fair hydrocarbon generative potential.Furthermore,the well logs were applied to predict TOC and residual hydrocarbon generation potential(S_(2))based on the sedimentary facies classification,usingΔlogR,generalizedΔlogR,logging multiple linear regression and BP neural network methods.The various methods were compared,and the BP neural network method have relatively better prediction accuracy.Based on the pre-stack simultaneous inversion(P-wave impedance,P-wave velocity and density inversion results)and the post-stack seismic attributes,the three-dimensional(3D)seismic prediction of TOC and S_(2)was carried out.The results show that the seismic near well prediction results of TOC and S_(2)based on seismic multi-attributes analysis correspond well with the results of well logging methods,and the plane prediction results are identical with the sedimentary facies map in the study area.The TOC and S_(2)values of E_(2)s_(1+2)and E_(2)s_(3)are higher than those in E_(3)d_(3)and E_(3)d_(2)L,basically consistent with the geochemical analysis results.This method makes up the deficiency of geochemical methods,establishing the connection between geophysical information and geochemical data,and it is helpful to the 3D quantitative prediction and the evaluation of high-quality source rocks in the areas where the drillings are limited. 展开更多
关键词 Total organic carbon(TOC) Residual hydrocarbon generation potential(S_(2)) Geophysical prediction Seismic attribute Bozhong sag Bohai Bay Basin
下载PDF
Enrichment factors of movable hydrocarbons in lacustrine shale oil and exploration potential of shale oil in Gulong Sag,Songliao Basin,NE China 被引量:2
5
作者 ZHAO Wenzhi BIAN Congsheng +9 位作者 LI Yongxin ZHANG Jinyou HE Kun LIU Wei ZHANG Bin LEI Zhengdong LIU Chang ZHANG Jingya GUAN Ming LIU Shijul 《Petroleum Exploration and Development》 SCIE 2023年第3期520-533,共14页
The geological characteristics and production practices of the major middle-and high-maturity shale oil exploration areas in China are analyzed.Combined with laboratory results,it is clear that three essential conditi... The geological characteristics and production practices of the major middle-and high-maturity shale oil exploration areas in China are analyzed.Combined with laboratory results,it is clear that three essential conditions,i.e.economic initial production,commercial cumulative oil production of single well,and large-scale recoverable reserves confirmed by the testing production,determine whether the continental shale oil can be put into large-scale commercial development.The quantity and quality of movable hydrocarbons are confirmed to be crucial to economic development of shale oil,and focuses in evaluation of shale oil enrichment area/interval.The evaluation indexes of movable hydrocarbon enrichment include:(1)the material basis for forming retained hydrocarbon,including TOC>2%(preferentially 3%-4%),and typeⅠ-Ⅱkerogens;(2)the mobility of retained hydrocarbon,which is closely related to the hydrocarbon composition and flow behaviors of light/heavy components,and can be evaluated from the perspectives of thermal maturity(Ro),gas-oil ratio(GOR),crude oil density,quality of hydrocarbon components,preservation conditions;and(3)the reservoir characteristics associated with the engineering reconstruction,including the main pore throat distribution zone,reservoir physical properties(including fractures),lamellation feature and diagenetic stage,etc.Accordingly,13 evaluation indexes in three categories and their reference values are established.The evaluation indicates that the light shale oil zones in the Gulong Sag of Songliao Basin have the most favorable enrichment conditions of movable hydrocarbons,followed by light oil and black oil zones,containing 20.8×10^(8) t light oil resources in reservoirs with R_(0)>1.2%,pressure coefficient greater than 1.4,effective porosity greater than 6%,crude oil density less than 0.82 g/cm^(3),and GOR>100 m/m^(3).The shale oil in the Gulong Sag can be explored and developed separately by the categories(resource sweet spot,engineering sweet spot,and tight oil sweet spot)depending on shale oil flowability.The Gulong Sag is the most promising area to achieve large-scale breakthrough and production of continental shale oil in China. 展开更多
关键词 Gulong sag continental shale oil movable hydrocarbon enrichment factor enrichment zone/interval evaluation material basis component flow engineering-associated factor
下载PDF
Petroleum Retention,Intraformational Migration and Segmented Accumulation within the Organic-rich Shale in the Cretaceous Qingshankou Formation of the Gulong Sag,Songliao Basin,Northeast China 被引量:1
6
作者 HUANGFU Yuhui ZHANG Jinyou +6 位作者 ZHANG Shuichang WANG Xiaomei HE Kun GUAN Ping ZHANG Huanxu ZHANG Bin WANG Huajian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第5期1568-1586,共19页
In this study,organic geochemical and petrological analyses were conducted on 111 shale samples from a well to understand the retention,intraformational migration and segmented accumulation(shale oil enrichment in dif... In this study,organic geochemical and petrological analyses were conducted on 111 shale samples from a well to understand the retention,intraformational migration and segmented accumulation(shale oil enrichment in different intervals is unconnected)features of shale oil within the organic-rich shale in the Qingshankou Formation of the Gulong Sag.Our study shows that retained petroleum characteristics in the investigated succession are mainly influenced by three factors:organic richness,intraformational migration and segmented accumulation.Organic matter richness primarily controls the amount of retained petroleum,especially the‘live’component indicated by the S_(2)value rather than the total organic carbon(TOC)figure alone.The negative expulsion efficiencies determined by mass-balance calculations of hydrocarbons reveal that petroleum from adjacent organic-rich intervals migrates into the interval of about 2386-2408 m,which is characterized by high free hydrocarbon(S_(1)),OSI and saturated hydrocarbons content,along with a greater difference inδ^(13)C values between polar compounds(including resins and asphaltenes)and saturated hydrocarbons.The depth-dependent heterogeneity of carbon isotope ratios(δ^(13)C)of mud methane gas,δ^(13)C of extracts gross composition(SARA),δ^(13)C of kerogen and SARA content of extracts suggest that the studied succession can be subdivided into four intervals.The shale oil sealing enrichment character in each interval is further corroborated by the distinctδ^(13)C values of mud methane gas in different intervals.Due to the migration of petroleum into the 2386-2408 m interval,the S_(1),OSI and saturated hydrocarbons content of the interval show higher relative values.The maturity of organic matter in the 2471-2500 m interval is at the highest with the smaller size molecular components of the retained petroleum.Thus,favorable‘sweet spots’may be found in the 2386-2408 m interval and the 2471-2500 m interval,according to the experiment results in this study. 展开更多
关键词 shale oil oil retention intraformational migration segmented accumulation Gulong sag
下载PDF
Mechanism of carbonate cementation and its influence on reservoir in Pinghu Formation of Xihu Sag 被引量:1
7
作者 Haiqiang Bai Xiaojun Xie +5 位作者 Gongcheng Zhang Ying Chen Ziyu Liu Lianqiao Xiong Jianrong Hao Xin Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期65-75,共11页
Carbonate cements are the most abundant authigenic mineral and impact on physical properties greatly in sandstone reservoir.In this paper,Pinghu Formation of Xihu Sag was taken as a target.Characteristics,distribution... Carbonate cements are the most abundant authigenic mineral and impact on physical properties greatly in sandstone reservoir.In this paper,Pinghu Formation of Xihu Sag was taken as a target.Characteristics,distribution and formation of carbonate cements were investigated via optical microscopy,cathodoluminescence(CL),electron probe and in-situ carbon-oxygen isotope.The results showed that carbonate cements varied in types and shapes.Calcite/dolomite mainly present as poikilotopic cements,while ferrocalcite/ferrodolomite/ankerite generally present as pore-filling cements.Carbon isotope(δ^(13)C)values of carbonate cements were ranging from–7.77‰to–2.67‰,with an average of–4.52‰,while oxygen isotope(δ^(18)O)values were ranging from–18.94‰to–12.04‰,with an average of–14.86‰.Theδ^(13)C/δ^(18)O indicated that the paleo-fluid of carbonate cement was mainly freshwater.Organic carbon mainly came from organic matter within mature source rocks,and inorganic carbon came from dissolution of carbonate debris and early carbonate cements.Distinctiveδ^(13)C/δ^(18)O values manifest that carbonate cements with different types formed in different periods,which make different contributions to the reservoir properties.Calcite/dolomite formed during eodiagenesis(70–90℃)and early mesodiagenesis stage(90–120℃),and were favorable to reservoir owing to their compacted resistance and selective dissolution.Ferrocalcite/ferrodolomite/ankerite formed during middle-late mesodiagenetic stage(above 120℃),and were unfavorable to reservoir due to cementing the residual intergranular pores.Hence,in order to evaluate the reservoir characteristics,it is of significantly important to distinguish different types of carbonate cements and explore their origins. 展开更多
关键词 carbonate cements genesis mechanism Xihu sag Pinghu Formation
下载PDF
Dissolution mechanism of a deep-buried sandstone reservoir in a deep water area:A case study from Baiyun Sag,Zhujiang River(Pearl River)Mouth Basin 被引量:1
8
作者 Jihua Liao Keqiang Wu +3 位作者 Lianqiao Xiong Jingzhou Zhao Xin Li Chunyu Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期151-166,共16页
Dissolution mechanism and favorable reservoir distribution prediction are the key problems restricting oil and gas exploration in deep-buried layers.In this paper,the Enping Formation and Zhuhai Formation in Baiyun Sa... Dissolution mechanism and favorable reservoir distribution prediction are the key problems restricting oil and gas exploration in deep-buried layers.In this paper,the Enping Formation and Zhuhai Formation in Baiyun Sag of South China Sea was taken as a target.Based on the thin section,scanning electron microscopy,X-ray diffraction,porosity/permeability measurement,and mercury injection,influencing factors of dissolution were examined,and a dissolution model was established.Further,high-quality reservoirs were predicted temporally and spatially.The results show that dissolved pores constituted the main space of the Paleogene sandstone reservoir.Dissolution primarily occurred in the coarse-and medium-grained sandstones in the subaerial and subaqueous distributary channels,while dissolution was limited in fine-grained sandstones and inequigranular sandstones.The main dissolved minerals were feldspar,tuffaceous matrix,and diagenetic cement.Kaolinization of feldspar and illitization of kaolinite are the main dissolution pathways,but they occur at various depths and temperatures with different geothermal gradients.Dissolution is controlled by four factors,in terms of depositional facies,source rock evolution,overpressure,and fault activities,which co-acted at the period of 23.8–13.8 Ma,and resulted into strong dissolution.Additionally,based on these factors,high-quality reservoirs of the Enping and Zhuhai formations are predicted in the northern slope,southwestern step zone,and Liuhua uplift in the Baiyun Sag. 展开更多
关键词 dissolution mechanism deep-buried reservoir diagenesis evolution reservoir prediction deep water region Baiyun sag
下载PDF
Differential tectonic evolution and formation mechanism of three subsags in Wenchang Sag of Pearl River Mouth Basin,South China Sea 被引量:1
9
作者 Qiu-Gen Zheng Jun-Liang Li +5 位作者 Bao-Hua Lei Peng Song Qi Li De-Feng Shi Hao Liu Chang-Song Lin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1379-1394,共16页
Notable differences in the structural characteristics and evolution of three adjacent sub-sags,i.e.,the Wenchang sub-sags A,B,and C,on the downthrown side of the Zhu IlI South Fault in the Wenchang Sag,are significant... Notable differences in the structural characteristics and evolution of three adjacent sub-sags,i.e.,the Wenchang sub-sags A,B,and C,on the downthrown side of the Zhu IlI South Fault in the Wenchang Sag,are significant as they affect the formation and distribution of the oil and gas in these three sub-sags.However,the differences in their tectonic evolutions and formation mechanisms have not yet been adequately explained.In this paper,stress analysis,equilibrium profiles,and paleogeomorphic restora-tion,are used to investigate the dynamic settings,formation mechanisms,and influencing factors of the structural deformation related to the formation of the Wenchang Sag based on interpretation of seismic data.The results of the stress analysis suggest clockwise deflection of the regional tensile stress direction from a WNW-ESE trend during the Early Paleocene to NW-SE and NNW-SSE trends during the Eocene,to a nearly N-S trend during the Oligocene,and finally to a NNE-SSW trend during the Miocene.This clockwise rotation of the regional tensile stress direction led to the formation of a dextral strike-slip stress component parallel to the NE-trending Zhu I South Fault.This strike-slip stress component formed a releasing bend in sub-sag A,and may be associated with the continuous subsidence of a thick sedimentary layer in sub-sag A.It also created a restraining bend in sub-sag B,which underwent multiple structural inversions during its extension and subsidence and has a relatively s mall sedimentary thick-ness.The double restraining bend in sub-sag C is considered to have been strongly uplifted and eroded in response to this strike-slip stress component.Four obvious structural inversions in sub-sag B are iden-tified in this paper.These structural inversions correspond to the last four regional tectonic movements.This interpretation suggests that the formation of the structural inversions was likely related to the strong tensile stress and the small intersection angle between the direction of the regional tensile stress and the pre-existing boundary fault.The rotation of the tensile stress direction was responsible for the strike-slip movement on the pre-existing boundary fault and the formation of the releasing bend and restraining bend,which controlled the structural evolutions of the sub-sags.This reasonably explains the differential tectonic evolution of these three sub-sags in the Wenchang Sag,and provides a crucial idea forstructuralanalysisof similarbasins. 展开更多
关键词 Strike-slip stress Releasing bend Restraining bend Double restraining bend Structura linversion ZhuⅢSouthfault Wenchang sag Northern South China Sea
下载PDF
Early Cenozoic paleontological assemblages and provenance evolution of the Lishui Sag,East China Sea
10
作者 Yingzhao Zhang Yiming Jiang +7 位作者 Zhenghua Liu Shuai Li Ning Li Jinshui Liu Peijun Qiao Kai Zhong Shuhui Chen Thian Lai Goh 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期113-122,共10页
The East China Sea Shelf Basin generated a series of back-arc basins with thick successions of marine-and terrestrial-facies sediments during Cenozoic.It is enriched with abundant oil and gas resources and is of great... The East China Sea Shelf Basin generated a series of back-arc basins with thick successions of marine-and terrestrial-facies sediments during Cenozoic.It is enriched with abundant oil and gas resources and is of great significance to the petroleum exploration undertakings.Therein,the Lishui Sag formed fan delta,fluvial delta and littoral-to-neritic facies sediments during Paleocene–Eocene,and the research on its sedimentary environment and sediment source was controversial.This study analyzed the paleontological combination characteristics,and conducted a source-to-sink comparative analysis to restore the sedimentary environment and provenance evolution of the Lishui Sag during Paleocene–Eocene based on the integration of detrital zircon U-Pb age spectra patterns with paleontological assemblages.The results indicated that Lishui Sag was dominated by littoral and neritic-facies environment during time corroborated by large abundance of foraminifera,calcareous nannofossils and dinoflagellates.Chronological analysis of detrital zircon U-Pb revealed that there were significant differences in sediment sources between the east and west area of the Lishui Sag.The western area was featured by deeper water depths in the Paleocene–Eocene,and the sediment was characterized by a single Yanshanian peak of zircon U-Pb age spectra,and mainly influenced from Yanshanian magmatic rocks of South China Coast and the surrounding paleo-uplifts.However,its eastern area partly showed Indosinian populations.In particular,the upper Eocene Wenzhou sediments were featured by increasingly plentiful Precambrian zircons in addition to the large Indosinian-Yanshanian peaks,indicating a possible impact from the Yushan Low Uplift to the east.Therefore,it is likely that the eastern Lishui Sag generated large river systems as well as deltas during time.Due to the Yuquan Movement,the Lishui Sag experienced uplifting and exhumation in the late stage of the late Eocene and was not deposited with sediments until Miocene.Featured by transitional-facies depositions of Paleocene–Eocene,the Lishui Sag thus beared significant potential for source rock and oil-gas reservoir accumulation. 展开更多
关键词 East China Sea Lishui sag paleontological assemblages SEDIMENTARY PROVENANCE hydrocarbon exploration
下载PDF
Organic matter accumulation in lacustrine shale of the Permian Jimsar Sag,Junggar Basin,NW China
11
作者 Xiu-Jian Ding Wen-Jun He +3 位作者 Hai-Lei Liu Xu-Guang Guo Ming Zha Zhong-Fa Jiang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1327-1346,共20页
The lacustrine organic-rich shale in the Permian Lucaogou(LCG)Formation of the Jimsar Sag,Junggar Basin,is one of the main shale oil plays in China.In this paper,geological and geochemical research techniques were emp... The lacustrine organic-rich shale in the Permian Lucaogou(LCG)Formation of the Jimsar Sag,Junggar Basin,is one of the main shale oil plays in China.In this paper,geological and geochemical research techniques were employed to evaluate the geochemical variability of the lacustrine shale and the pro-duction of organic matter and its preservation conditions.The LcG Formation is characterized by its complex mineral compositions and a wide range of organic matter richness and quality.The presence of high proportions ofβ-carotane and C2g steranes,indicates that the organic matter mainly originated from phytoplankton and aquatic algal-bacterial organisms,especially cyanobacteria.This study found that the productivity of the Lower LCG Member(P2li)was highest,and the Middle LCG Member(P_(2)l_(2))was the lowest.During the deposition of the Lower LCG Member,the lake's bottom water was predominantly a reducing environment,and the degradation of organic matter was largely a result of bacterial sulfate reduction.During the deposition of the Middle and Upper LCG members,the lake's bottom water was mainly oxidizing,and the degradation of organic matter was likely to be caused by aerobic processes.Based on a comprehensive analysis of the origin and production of organic matter,as well as its depo-sitional environment and preservation conditions,two organic matter accumulation models were pro-posed to explain the distribution of the organic-rich shale.In model A,the high influx of volcanic ash released nutrients and brought abundant sulfate into the water,the accumulation of organic matter was mainly controlled by the preservation of organic matter,which was mainly controlled by BsR.In the model B,the influx of volcanic ash was small,organic matter was mainly degraded by oxygen and the accumulation of organic matter is mainly determined by the production of organic matter. 展开更多
关键词 Lucaogou formation Jimsar sag Organic-matter-rich shale Organic matter accumulation Organic matter productivity Bacterial sulfate reduction
下载PDF
Microscopic oil occurrence in high-maturity lacustrine shales:Qingshankou Formation,Gulong Sag,Songliao Basin
12
作者 Jing-Ya Zhang Ru-Kai Zhu +5 位作者 Song-Tao Wu Xiao-Hua Jiang Chang Liu Yi Cai Su-Rong Zhang Tian-Shu Zhang 《Petroleum Science》 SCIE EI CSCD 2023年第5期2726-2746,共21页
Occurrence and mobility of shale oil are prerequisites for evaluating shale oil reserves and prioritizing exploration targets,particularly for heterogeneous lacustrine shales.The Qingshankou Formation in the Gulong Sa... Occurrence and mobility of shale oil are prerequisites for evaluating shale oil reserves and prioritizing exploration targets,particularly for heterogeneous lacustrine shales.The Qingshankou Formation in the Gulong Sag,Songliao Basin is a classic lacustrine pure shale reservoir that contains abundant shale oil resources.The predicted geological reserves of the shale are 1.268×10^(9) t.In this study,field emission scanning electron microscope(FE-SEM),the modular automated processing system(MAPS),pyrolysisgas chromatography(Py-GC),low-pressure nitrogen gas adsorption(LPNA),Soxhlet extraction,pyrolysis,and 2-D nuclear magnetic resonance(NMR)were integrated to describe the shale oil components,microscopic occurrence,mobility,and the effective pore size distribution.Meanwhile,the related controlling factors are discussed.The shale oil in the Qingshankou Fm exists dominantly in the matrix pores of the clay minerals,with small amounts distributed in the intergranular pores of terrigenous clastic grains,intercrystalline pores of pyrite,intragranular pores of ostracod shells,and micro-fractures.Shale oil is distributed in the pore spaces of variable sizes in different lithofacies.The clay mineral-laminated shales are characterized by the broadest range of pore size and largest volume of pore spaces with shale oil distribution,while the ostracod-laminated shales have limited pore spaces retaining oil.Furthermore,the proposed integrated analysis evaluates the shale oil molecules existing in two states:movable,and adsorbed oil,respectively.The result illustrates that movable oil takes up 30.6%e79.4%of the total residual oil.TOC,mineral composition,and pore structures of the shale joint together to control the states and mobility of the shale oil.TOC values are positively correlated with the quantities of shale oil regardless of the state of oil.The mineral components significantly impact the state of shale oil.Noticeable differences in the states of oil were observed following the changing types of minerals,possibly due to their difference in adsorption capacity and wettability.Clay minerals attract more adsorbed oil than movable oil.Felsic minerals generally decrease the occurrence of total and adsorbed oil.Carbonate plays a positive role in hydrocarbon retention of all the shale oil states.As for the pore structure,the average pore size exerts a critical impact on the total,movable,and adsorbed oil content.The total pore volume and specific surface area of shales play a principal role in controlling the total yields and amounts of adsorbed oil.This research improves the understanding of the occurrence characteristics and enrichment mechanisms of shale oil in terrestrial pure shales and provides a reference for locating favorable shale oil exploration areas. 展开更多
关键词 Shale oil content Occurrence states Micro-oil distribution Effective pore spaces Controlling factors Gulong sag
下载PDF
Controlling factors on the charging process of oil and gas in the eastern main sub-sag of the Baiyun Sag,Zhujiang River(Pearl River)Mouth Basin
13
作者 Cong Chen Xiangtao Zhang +5 位作者 Guangrong Peng Zulie Long Baojun Liu Xudong Wang Puqiang Zhai Bo Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期189-200,共12页
The eastern main sub-sag(E-MSS)of the Baiyun Sag was the main zone for gas exploration in the deep-water area of the Zhujiang River(Pearl River)Mouth Basin at its early exploration stage,but the main goal of searching... The eastern main sub-sag(E-MSS)of the Baiyun Sag was the main zone for gas exploration in the deep-water area of the Zhujiang River(Pearl River)Mouth Basin at its early exploration stage,but the main goal of searching gas in this area was broken through by the successful exploration of the W3-2 and H34B volatile oil reservoirs,which provides a new insight for exploration of the Paleogene oil reservoirs in the E-MSS.Nevertheless,it is not clear on the distribution of“gas accumulated in the upper layer,oil accumulated in the lower layer”(Gas_(upper)-Oil_(lower))under the high heat flow,different source-rock beds,multi-stages of oil and gas charge,and multi-fluid phases,and not yet a definite understanding of the genetic relationship and formation mechanism among volatile oil,light oil and condensate gas reservoirs,and the migration and sequential charge model of oil and gas.These puzzles directly lead to the lack of a clear direction for oil exploration and drilling zone in this area.In this work,the PVT fluid phase,the origin of crude oil and condensate,the secondary alteration of oil and gas reservoirs,the evolution sequence of oil and gas formation,the phase state of oil and gas migration,and the configuration of fault activity were analyzed,which established the migration and accumulation model of Gas_(upper)-Oil_(lower)cocontrolled by source and heat,and fractionation controlled by facies in the E-MSS.Meanwhile,the fractionation evolution model among common black reservoirs,volatile reservoirs,condensate reservoirs and gas reservoirs is discussed,which proposed that the distribution pattern of Gas_(upper)-Oil_(lower)in the E-MSS is controlled by the generation attribute of oil and gas from source rocks,the difference of thermal evolution,and the fractionation controlled by phases after mixing the oil and gas.Overall,we suggest that residual oil reservoirs should be found in the lower strata of the discovered gas reservoirs in the oil-source fault and diapir-developed areas,while volatile oil reservoirs should be found in the deeper strata near the sag with no oil-source fault area. 展开更多
关键词 volatile oil oil-oil correlation phase-controlled fractionation sequential charge model Baiyun sag
下载PDF
Risk assessment of fault reactivation considering the heterogeneity of friction strength in the BZ34-2 Oilfield,Huanghekou Sag,Bohai Bay Basin,China
14
作者 Ye-Jun Jin Ling-Dong Meng +4 位作者 Ding-You Lyu Xiao-Fei Fu Jiang-Bo Huang Si-Jia Cao Jian-Da Li 《Petroleum Science》 SCIE EI CSCD 2023年第5期2695-2708,共14页
The hazards of fault reactivation caused by fluid injection are a growing concern.However,traditional evaluation methods of fault stability are likely to underestimate the risk in fault segments with a high clay conte... The hazards of fault reactivation caused by fluid injection are a growing concern.However,traditional evaluation methods of fault stability are likely to underestimate the risk in fault segments with a high clay content.Therefore,an extended evaluation method of fault stability(ECPP)incorporating the heterogeneity in friction strength caused by variation in the clay content within the fault zone is established in this study.After characterizing the current stress field of the BZ34-2 Oilfield in the Huanghekou Sag,Bohai Bay Basin,the reactivation potential of faults is evaluated using both traditional and ECPP methods.Traditional evaluation of fault stability shows that all faults are stable in the present stress field.Faults oriented ENE have a relatively high risk.The maximum sustainable fluid pressure Δp is approximately 8.8-8.9 MPa and 9.3-9.9 MPa.When considering the heterogeneity in fault friction strength,the fault stability is clearly controlled by the clay content of the faults.The high-risk fault segments assessed using traditional methods are no longer obvious,which reflects the importance of incorporating friction strength heterogeneity in the process of fault evaluation.Moreover,the results also show that most fault segments are activated when the fault zone is dominated by montmorillonite,reflecting the strong influence of clay mineral types on fault stability.The factors influencing the heterogeneity of fault friction strength are very complicated in actual situations.Therefore,future work should focus on establishing a database through a large number of experiments and investigating the relationship between the friction coefficient and the main controlling factors. 展开更多
关键词 Faultreactivation In-situ stress Strength heterogeneity of fault friction Huanghekou sag
下载PDF
Petroleum geochemistry and origin of shallow-buried saline lacustrine oils in the slope zone of the Mahu sag, Junggar Basin, NW China
15
作者 Dong-Yong Wang Mei-Jun Li +6 位作者 Yang Zhou Lu Yang Yuan-Feng Yang Er-Ting Li Jun Jin Xian-Li Zou Bo-Dong Xu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3363-3378,共16页
Recently, significant oil discoveries have been made in the shallower pay zones of the Jurassic Badaowan Formation (J_(1)b) in the Mahu Sag, Junggar Basin, Northwest China. However, little work has been done on the ge... Recently, significant oil discoveries have been made in the shallower pay zones of the Jurassic Badaowan Formation (J_(1)b) in the Mahu Sag, Junggar Basin, Northwest China. However, little work has been done on the geochemical characteristics and origins of the oil in the J_(1)b reservoir. This study analyzes 44 oil and 14 source rock samples from the area in order to reveal their organic geochemical characteristics and the origins of the oils. The J_(1)b oils are characterized by a low Pr/Ph ratio and high β-carotene and gammacerane indices, which indicate that they were mainly generated from source rocks deposited in a hypersaline environment. The oils are also extremely enhanced in C_(29) regular steranes, possibly derived from halophilic algae. Oil-source correlation shows that the oils were derived from the Lower Permian Fengcheng Formation (P_(1)f) source rocks, which were deposited in a strongly stratified and highly saline water column with a predominance of algal/bacterial input in the organic matter. The source rocks of the Middle Permian lower-Wuerhe Formation (P_(2)w), which were deposited in fresh to slightly saline water conditions with a greater input of terrigenous organic matter, make only a minor contribution to the J_(1)b oils. The reconstruction of the oil accumulation process shows that the J_(1)b oil reservoir may have been twice charged during Late Jurassic–Early Cretaceous and the Paleogene–Neogene, respectively. A large amount volume of hydrocarbons generated in the P_(1)f source rock and leaked from T_(1)b oil reservoirs migrated along faults connecting source beds and shallow-buried secondary faults into Jurassic traps, resulting in large-scale accumulations in J_(1)b. These results are crucial for understanding the petroleum system of the Mahu Sag and will provide valuable guidance for petroleum exploration in the shallower formations in the slope area of the sag. 展开更多
关键词 Molecular marker Saline lacustrine oil Petroleum origin Lower Permian Fengcheng Formation Shallow-buried reservoir Mahu sag
下载PDF
Geological and Engineering‘Sweet Spots'in the Permian Lucaogou Formation,Jimusar Sag,Junggar Basin
16
作者 LAI Jin BAI Tianyu +5 位作者 LI Hongbin PANG Xiaojiao BAO Meng WANG Guiwen LIU Bingchang LIU Shichen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第4期1214-1228,共15页
Unconventional oil and gas resources require petrophysical logs to answer the question of how best to optimize geological and engineering‘sweet spots'.Therefore,the establishment of a key well with comprehensive ... Unconventional oil and gas resources require petrophysical logs to answer the question of how best to optimize geological and engineering‘sweet spots'.Therefore,the establishment of a key well with comprehensive descriptions of lithology,reservoir properties,hydrocarbon-bearing properties,electronic well log responses,source rock properties,brittleness,and in situ stress magnitude and direction is important for the effective exploration and production of unconventional hydrocarbon resources.Cores,thin sections,scanning electron microscopy(SEM)and comprehensive well log suites are used to build a key well for the Permian Lucaogou Formation,Jimusar Sag of the Junggar Basin.The results show that there are three main types of lithologies,including siltstone,mudstone and dolostone.Lithologies can be predicted using the combination of conventional well and image logs.The pore spaces consist of interparticle pores,intragranular dissolution pores and micropores.Nuclear Magnetic Resonance(NMR)T_(2)components longer than 1.7 ms are superposed as effective porosity.Permeability is calculated using the Coates model from NMR T_(2)spectra.The ratio of T_(2)components>7.0 ms to T_(2)components>0.3 ms is used to calculate oil saturation.TOC is calculated using theΔlog R method.Brittleness index is calculated using Poisson-Young's method,ranging from 13.42%-70.53%.In situ stress direction is determined,and in situ stress magnitudes(maximum horizontal stress SH_(max),minimum horizontal stress Sh_(min),vertical stress S_(v))are calculated using density and sonic logs.The strike-slip stress type(SH_(max)>S_(v)>Sh_(min))is encountered.The key well which comprehensively includes the above seven properties is established.Geological and engineering(geomechanical)‘sweet spots'are then optimized from the key well by fully analyzing lithology,reservoir property,oilbearing potential,in situ stress magnitude and brittleness.It is hoped that the results support engineers'and geologists'decisions for the future exploitation of unconventional hydrocarbon resources. 展开更多
关键词 key well unconventional oil and gas resources ‘sweet spot' well logs Lucaogou Formation Jimusar sag
下载PDF
Origin of hydrocarbon fluids and discussion of abnormal carbon isotopic compositions in the Lishui-Jiaojiang Sag,East China Sea Shelf Basin
17
作者 Jingqi Xu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期76-88,共13页
The hydrocarbon gases in the L1 gas field of the Lishui-Jiaojiang Sag have been commonly interpreted to be an accumulation of pure sapropelic-type thermogenic gas.In this study,chemical components,stable isotopic comp... The hydrocarbon gases in the L1 gas field of the Lishui-Jiaojiang Sag have been commonly interpreted to be an accumulation of pure sapropelic-type thermogenic gas.In this study,chemical components,stable isotopic compositions,and light hydrocarbons were utilized to shed light on the origins of the hydrocarbon fluids in the L1gas pool.The hydrocarbon fluids in the L1 gas pool are proposed to be a mixture of three unique components:mid-maturity oil from the middle Paleocene coastal marine Lingfeng source rock,oil-associated(late oil window)gas generated from the lower Paleocene lacustrine Yueguifeng source rock,and primary microbial gas from the paralic deposits of the upper Paleocene Mingyuefeng source rock.Here,for the first time,the hydrocarbon gases in the L1 gas pool are diagnosed as mixed oil-associated sapropelic-type gas and microbial gas via four pieces of principal evidence:(1)The abnormal carbon isotopic distributions of all methane homologues from C_(1)(CH_(4)or methane)to C_(5)(C_(5)H_(12)or pentane)shown in the Chung plot;(2)the diagnostic~(13)C-depleted C_(1)compared with the thermogenic sapropelic-type gas model,whileδ^(13)C_(2)(C_(2)H_(6)or ethane)andδ^(13)C_(3)(C_(3)H_(8)or propane)both fit perfectly;(3)the excellent agreement of the calculated carbon isotopic compositions of the pure thermogenic gas with the results of the thermal simulated gas from the type-II1 kerogen-rich Yueguifeng source rock;and(4)the oil-associated gas inferred from various binary genetic diagrams with an abnormally elevated gas oil ratio.Overall,the natural gases of the L1 gas pool were quantified in this study to comprise approximately 13%microbial gas,nearly 48%oil-associated sapropelic-type gas,and 39%of nonhydrocarbon gas.The microbial gas is interpreted to have been codeposited and entrained in the humic-kerogen-rich Mingyuefeng Formation under favorable lowtemperature conditions during the late Paleocene-middle Eocene.The microbial gas subsequently leaked into the structurally and stratigraphically complex L1 trap with oil-associated sapropelic-type gas from the Yueguifeng source rock during the late Eocene-Oligocene uplifting event.A small amount of humic-kerogen-generated oil in the L1 gas pool is most likely to be derived from the underlying Lingfeng source rock.The detailed geological and geochemical considerations of source rocks are discussed to explain the accumulation history of hydrocarbon fluids in the L1 gas pool.This paper,therefore,represents an effort to increase the awareness of the pitfalls of various genetic diagrams,and an integrated geochemical and geological approach is required for hydrocarbonsource correlation. 展开更多
关键词 origin of hydrocarbons carbon isotope hydrogen isotope light hydrocarbon East China Sea Shelf Basin Lishui-Jiaojiang sag
下载PDF
The control of astronomical cycles on lacustrine fine-grained event Sedimentation——A case study of the Chunshang sub-member of the upper Es_(4) in the Dongying Sag
18
作者 Tian-Yu Xu Jun Peng +4 位作者 Le-Dan Yu Hao-Dong Han Yi-Ming Yang Yao Zeng Yu-Bin Wang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1395-1410,共16页
Fine-grained lacustrine sedimentation controlled by astronomical cycles remains a research weakness in sedimentology studies,as most studies have concentrated on how astronomical cycles affect the normal lacustrine fi... Fine-grained lacustrine sedimentation controlled by astronomical cycles remains a research weakness in sedimentology studies,as most studies have concentrated on how astronomical cycles affect the normal lacustrine fine-grained sedimentation,but how they affect the lacustrine fine-grained event sedimen-tation has been rarely studied.Therefore,this work researched the characteristics of event sedimentation by systematically observing the cores from 30 cored wells in the Shahejie Formation of the Dongying Sag at a depth of over 1800 m,with more than 4000 thin sections being authenticated and over 1000 whole rocks being analyzed by X-ray diffraction(XRD).The research object was the Chunshang Sub-member of Upper Es_(4) in the Fanye 1 well,as it had the most comprehensive analysis data and underwent the most continuous coring.We divided astronomical cycles into different orders and made corresponding curves using the gamma-ray(GR)curve,spectral analysis,power spectrum estimation,and module extreme values,there were 6 long eccentricity periods,22 short eccentricity periods,65.5 obliquity cycles,and 110.5 precession cycles in this sub-member.On this basis,this study analyzed the control of astronomical cycles on the lacustrine fine-grained event sedimentation,and the research shows deposits were developed by slide-slump,turbidities,hyperpycnites,and tempestites in the Chunshang Sub-member of the Upper Es_(4),with higher long eccentricity,the monsoon climate contributes to the formation of storm currents,while with lower long eccentricity,the surface deposits are severely eroded by rivers and rainfalls,thus developing the slide-slump,turbidities,and hyperpycnites.The relationship between the lacustrine fine-grained event sedimentation and astronomical cycles was studied in this case study,which can promote research on fine-grained sedimentary rocks in genetic dynamics and boost the theoretical and disciplinary development in fine-grained sedimentology. 展开更多
关键词 Astronomical cycle Fine-grained event sedimentation Long eccentricity Chunshang sub-member of the upper Es_(4) Dongying sag
下载PDF
Impact of microorganism degradation on hydrocarbon generation of source rocks:A case study of the Bozhong Sag,Bohai Bay Basin
19
作者 Wei Li Yufei Gao Youchuan Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期243-253,共11页
The discovery of the Bozhong 19-6 gas field,the largest integrated condensate gas field in the eastern China in 2018,opened up a new field for the natural gas exploration deep strata in the Bohai Bay Basin,demonstrati... The discovery of the Bozhong 19-6 gas field,the largest integrated condensate gas field in the eastern China in 2018,opened up a new field for the natural gas exploration deep strata in the Bohai Bay Basin,demonstrating there is a great potential for natural gas exploration in oil-type basins.The ethane isotope of the Bozhong 19-6 condensate gas is heavy,showing the characteristics of partial humic gas.In this paper,aimed at the source rocks of the Bozhong 19-6 gas field in the Bohai Bay Basin,the characteristics of the source rocks in the Bozhong 19-6 structural belt were clarified and the reason are explained from impact of microorganism degradation on hydrocarbon generation of source rocks why the condensate oil and gas had heavy carbon isotope and why it showed partial humic characteristics was explored based on the research of parent materials.The following conclusions were obtained:The paleontology of the Bozhong 19-6 structural belt and its surrounding sub-sags is dominated by higher plants,such as angiosperm and gymnosperm.During the formation of source rocks,under the intensive transformation of microorganism,the original sedimentary organic matter such as higher plants was degraded and transformed by defunctionalization.Especially,the transformation of anaerobic microorganisms on source rocks causes the degradation and defunctionalization of a large number of humic products such as higher plants and the increase of hydrogen content.The degradation and transformation of microorganism don't transform the terrestrial humic organic matter into newly formed“sapropel”hydrocarbons,the source rocks are mixed partial humic source rocks.As a result,hydrogen content incrased and the quality of source rocks was improved,forming the partial humic source rocks dominated by humic amorphous bodies.The partial humic source rocks are the main source rocks in the Bozhong 19-6 gas field,and it is also the internal reason why the isotope of natural gas is heavy. 展开更多
关键词 Bozhong sag natural gas types of source rocks Microorganism degradation hydrocarbon generation of source rocks
下载PDF
Diversity of depositional architecture and sandbody distribution of sublacustrine fans during forced regression: A case study of Paleogene Middle Sha 3 Member in Dongying Sag, Bohai Bay Basin, East China
20
作者 WU Qianran XIAN Benzhong +5 位作者 GAO Xianzhi TIAN Rongheng ZHANG Haozhe LIU Jianping GAO Yukun WANG Pengyu 《Petroleum Exploration and Development》 SCIE 2023年第4期894-908,共15页
Currently, the differences in gravity flow deposits within different systems tracts in continental lacustrine basins are not clear. Taking the middle submember of the third member of Paleogene Shahejie Formation(Sha 3... Currently, the differences in gravity flow deposits within different systems tracts in continental lacustrine basins are not clear. Taking the middle submember of the third member of Paleogene Shahejie Formation(Sha 3 Member) in the Shishen 100 area of the Dongying Sag in the Bohai Bay Basin as an example, the depositional architecture of sublacustrine fans during forced regression and the impact of the fourth-order base-level changes on their growth were investigated using cores, well logs and 3D seismic data. Sublacustrine fans were mainly caused by hyperpycnal flow during the fourth-order base-level rise, while the proportion of slump-induced sublacustrine fans gradually increased during the late fourth-order base-level fall. From rising to falling of the fourth-order base-level, the extension distance of channels inside hyperpycnal-fed sublacustrine fans reduced progressively, resulting in the transformation in their morphology from a significantly channelized fan to a skirt-like fan. Furthermore, the depositional architecture of distributary channel complexes in sublacustrine fans changed from vertical aggradation to lateral migration, and the lateral size of individual channel steadily decreased. The lobe complex's architectural patterns evolved from compensational stacking of lateral migration to aggradational stacking, and the lateral size of individual lobe steadily grew. This study deepens the understanding of depositional features of gravity flow in high-frequency sequence stratigraphy and provides a geological foundation for the fine development of sublacustrine fan reservoirs. 展开更多
关键词 Bohai Bay Basin Dongying sag Paleogene Shahejie Formation sublacustrine fan hyperpycnal flow gravity flow base-level depositional architecture
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部