In response to the shortcomings of the Salp Swarm Algorithm (SSA) such as low convergence accuracy and slow convergence speed, a Multi-Strategy-Driven Salp Swarm Algorithm (MSD-SSA) was proposed. First, food sources o...In response to the shortcomings of the Salp Swarm Algorithm (SSA) such as low convergence accuracy and slow convergence speed, a Multi-Strategy-Driven Salp Swarm Algorithm (MSD-SSA) was proposed. First, food sources or random leaders were associated with the current bottle sea squirt at the beginning of the iteration, to which Levy flight random walk and crossover operators with small probability were added to improve the global search and ability to jump out of local optimum. Secondly, the position mean of the leader was used to establish a link with the followers, which effectively avoided the blind following of the followers and greatly improved the convergence speed of the algorithm. Finally, Brownian motion stochastic steps were introduced to improve the convergence accuracy of populations near food sources. The improved method switched under changes in the adaptive parameters, balancing the exploration and development of SSA. In the simulation experiments, the performance of the algorithm was examined using SSA and MSD-SSA on the commonly used CEC benchmark test functions and CEC2017-constrained optimization problems, and the effectiveness of MSD-SSA was verified by solving three real engineering problems. The results showed that MSD-SSA improved the convergence speed and convergence accuracy of the algorithm, and achieved good results in practical engineering problems.展开更多
Pilot pattern has a significant effect on the performance of channel estimation based on compressed sensing.However,because of the influence of the number of subcarriers and pilots,the complexity of the enumeration me...Pilot pattern has a significant effect on the performance of channel estimation based on compressed sensing.However,because of the influence of the number of subcarriers and pilots,the complexity of the enumeration method is computationally impractical.The meta-heuristic algorithm of the salp swarm algorithm(SSA)is employed to address this issue.Like most meta-heuristic algorithms,the SSA algorithm is prone to problems such as local optimal values and slow convergence.In this paper,we proposed the CWSSA to enhance the optimization efficiency and robustness by chaotic opposition-based learning strategy,adaptive weight factor,and increasing local search.Experiments show that the test results of the CWSSA on most benchmark functions are better than those of other meta-heuristic algorithms.Besides,the CWSSA algorithm is applied to pilot pattern optimization,and its results are better than other methods in terms of BER and MSE.展开更多
CognitiveRadio(CR)has been developed as an enabling technology that allows the unused or underused spectrum to be used dynamically to increase spectral efficiency.To improve the overall performance of the CR systemit ...CognitiveRadio(CR)has been developed as an enabling technology that allows the unused or underused spectrum to be used dynamically to increase spectral efficiency.To improve the overall performance of the CR systemit is extremely important to adapt or reconfigure the systemparameters.The Decision Engine is a major module in the CR-based system that not only includes radio monitoring and cognition functions but also responsible for parameter adaptation.As meta-heuristic algorithms offer numerous advantages compared to traditional mathematical approaches,the performance of these algorithms is investigated in order to design an efficient CR system that is able to adapt the transmitting parameters to effectively reduce power consumption,bit error rate and adjacent interference of the channel,while maximized secondary user throughput.Self-Learning Salp Swarm Algorithm(SLSSA)is a recent meta-heuristic algorithm that is the enhanced version of SSA inspired by the swarming behavior of salps.In this work,the parametric adaption of CR system is performed by SLSSA and the simulation results show that SLSSA has high accuracy,stability and outperforms other competitive algorithms formaximizing the throughput of secondary users.The results obtained with SLSSA are also shown to be extremely satisfactory and need fewer iterations to converge compared to the competitive methods.展开更多
This study proposes a novel nature-inspired meta-heuristic optimizer based on the Reptile Search Algorithm combed with Salp Swarm Algorithm for image segmentation using gray-scale multi-level thresholding,called RSA-S...This study proposes a novel nature-inspired meta-heuristic optimizer based on the Reptile Search Algorithm combed with Salp Swarm Algorithm for image segmentation using gray-scale multi-level thresholding,called RSA-SSA.The proposed method introduces a better search space to find the optimal solution at each iteration.However,we proposed RSA-SSA to avoid the searching problem in the same area and determine the optimal multi-level thresholds.The obtained solutions by the proposed method are represented using the image histogram.The proposed RSA-SSA employed Otsu’s variance class function to get the best threshold values at each level.The performance measure for the proposed method is valid by detecting fitness function,structural similarity index,peak signal-to-noise ratio,and Friedman ranking test.Several benchmark images of COVID-19 validate the performance of the proposed RSA-SSA.The results showed that the proposed RSA-SSA outperformed other metaheuristics optimization algorithms published in the literature.展开更多
The Salp Swarm Algorithm (SSA) is a recently proposed swarm intelligence algorithm inspired by salps, a marine creature similar to jellyfish. Despite its simple structure and solid exploratory ability, SSA suffers fro...The Salp Swarm Algorithm (SSA) is a recently proposed swarm intelligence algorithm inspired by salps, a marine creature similar to jellyfish. Despite its simple structure and solid exploratory ability, SSA suffers from low convergence accuracy and slow convergence speed when dealing with some complex problems. Therefore, this paper proposes an improved algorithm based on SSA and adds three improvements. First, the Real-time Update Mechanism (RUM) underwrites the role of ensuring that excellent individual information will not be lost and information exchange will not lag in the iterative process. Second, the Communication Strategy (CMS), on the other hand, uses the multiplicative relationship of multiple individuals to regulate the exploration and exploitation process dynamically. Third, the Selective Replacement Strategy (SRS) is designed to adaptively adjust the variance ratio of individuals to enhance the accuracy and depth of convergence. The new proposal presented in this study is named RCSSSA. The global optimization capability of the algorithm was tested against various high-performance and novel algorithms at IEEE CEC 2014, and its constrained optimization capability was tested at IEEE CEC 2011. The experimental results demonstrate that the proposed algorithm can converge faster while obtaining better optimization results than traditional swarm intelligence and other improved algorithms. The statistical data in the table support its optimization capabilities, and multiple graphs deepen the understanding and analysis of the proposed algorithm.展开更多
The Salp Swarm Algorithm(SSA)is a population-based Meta-heuristic Algorithm(MA)that simulates the behavior of a group of salps foraging in the ocean.Although the basic SSA has stable exploration capability and converg...The Salp Swarm Algorithm(SSA)is a population-based Meta-heuristic Algorithm(MA)that simulates the behavior of a group of salps foraging in the ocean.Although the basic SSA has stable exploration capability and convergence speed,it still can fall into local optimum when solving complex optimization problems,which may be due to low utilization of population information and unbalanced exploration-to-exploitation ratio.Therefore,this study proposes a Double Mutation Salp Swarm Algorithm(DMSSA).In this study,a Cuckoo Mutation Strategy(CMS)and an Adaptive DE Mutation Strategy(ADMS)are introduced into the structure of the original SSA.The former mutation strategy is summarized as three basic operations:judgment,shuffling,and mutation.The purpose is to fully consider the information among search agents and use the differences between different search agents to participate in the update of positions,making the optimization process both diverse in exploration and minor in randomness.The latter strategy employs three basic operations:selection,mutation,and adaptation.As the follower part,some individuals do not blindly adopt the original follow method.Instead,the global optimal position and differences are considered,and the variation factor is adjusted adaptively,allowing the new algorithm to balance exploration,exploitation,and convergence efficiency.To evaluate the performance of DMSSA,comparisons are made with numerous algorithms on 30 IEEE CEC2014 benchmark functions.The statistical results confirm the better performance and significant difference of DMSSA in solving benchmark function tests.Finally,the applicability and scalability of DMSSA to optimization problems with constraints are further confirmed in three experiments on classical engineering design optimization problems.The source code of the proposed algorithm will be available at:https://github.com/ncjsq/Double-Mutational-Salp-Swarm-Algorithm.展开更多
The Salp Swarm Algorithm(SSA)may have trouble in dropping into stagnation as a kind of swarm intelligence method.This paper developed an adaptive barebones salp swarm algorithm with quasi-oppositional-based learning t...The Salp Swarm Algorithm(SSA)may have trouble in dropping into stagnation as a kind of swarm intelligence method.This paper developed an adaptive barebones salp swarm algorithm with quasi-oppositional-based learning to compensate for the above weakness called QBSSA.In the proposed QBSSA,an adaptive barebones strategy can help to reach both accurate convergence speed and high solution quality;quasi-oppositional-based learning can make the population away from traping into local optimal and expand the search space.To estimate the performance of the presented method,a series of tests are performed.Firstly,CEC 2017 benchmark test suit is used to test the ability to solve the high dimensional and multimodal problems;then,based on QBSSA,an improved Kernel Extreme Learning Machine(KELM)model,named QBSSA–KELM,is built to handle medical disease diagnosis problems.All the test results and discussions state clearly that the QBSSA is superior to and very competitive to all the compared algorithms on both convergence speed and solutions accuracy.展开更多
Resource management in Underground Wireless Sensor Networks(UWSNs)is one of the pillars to extend the network lifetime.An intriguing design goal for such networks is to achieve balanced energy and spectral resource ut...Resource management in Underground Wireless Sensor Networks(UWSNs)is one of the pillars to extend the network lifetime.An intriguing design goal for such networks is to achieve balanced energy and spectral resource utilization.This paper focuses on optimizing the resource efficiency in UWSNs where underground relay nodes amplify and forward sensed data,received from the buried source nodes through a lossy soil medium,to the aboveground base station.A new algorithm called the Hybrid Chaotic Salp Swarm and Crossover(HCSSC)algorithm is proposed to obtain the optimal source and relay transmission powers to maximize the network resource efficiency.The proposed algorithm improves the standard Salp Swarm Algorithm(SSA)by considering a chaotic map to initialize the population along with performing the crossover technique in the position updates of salps.Through experimental results,the HCSSC algorithm proves its outstanding superiority to the standard SSA for resource efficiency optimization.Hence,the network’s lifetime is prolonged.Indeed,the proposed algorithm achieves an improvement performance of 23.6%and 20.4%for the resource efficiency and average remaining relay battery per transmission,respectively.Furthermore,simulation results demonstrate that the HCSSC algorithm proves its efficacy in the case of both equal and different node battery capacities.展开更多
Identifying the parameters of photovoltaic(PV)modules is significant for their design and simulation.Because of the instabilities in the weather action and land surface of the earth,which cause errors in measuring,a n...Identifying the parameters of photovoltaic(PV)modules is significant for their design and simulation.Because of the instabilities in the weather action and land surface of the earth,which cause errors in measuring,a novel fuzzy representation-based PV module is formulated and developed.In this paper,a novel locomotion-based hybrid salp swarm algorithm(LHSSA)is presented to identify the parameters of PV modules accurately and reliably.In the LHSSA,better leader salps based on particle swarm optimization(PSO)are incorporated to the traditional salp swarm algorithm(SSA)in a serialized scheme with the aim of providing more valuable information for the leader salps of the SSA.By this integration,the proposed LHSSA can escape the local optima as well as guide the seeking process to attain the promising region.The proposed LHSSA is investigated on different PV models,i.e.,single-diode(SD),double-diode(DD),and PV module in crisp and fuzzy aspects.By comparing with different algorithms,the comprehensive results affirm that the LHSSA can achieve a highly competitive performance,especially on quality and reliability.展开更多
Contemporarily,the development of distributed generations(DGs)technologies is fetching more,and their deployment in power systems is becom-ing broad and diverse.Consequently,several glitches are found in the recent st...Contemporarily,the development of distributed generations(DGs)technologies is fetching more,and their deployment in power systems is becom-ing broad and diverse.Consequently,several glitches are found in the recent studies due to the inappropriate/inadequate penetrations.This work aims to improve the reliable operation of the power system employing reliability indices using a metaheuristic-based algorithm before and after DGs penetration with feeder system.The assessment procedure is carried out using MATLAB software and Mod-ified Salp Swarm Algorithm(MSSA)that helps assess the Reliability indices of the proposed integrated IEEE RTS79 system for seven different configurations.This algorithm modifies two control parameters of the actual SSA algorithm and offers a perfect balance between the exploration and exploitation.Further,the effectiveness of the proposed schemes is assessed using various reliability indices.Also,the available capacity of the extended system is computed for the best configuration of the considered system.The results confirm the level of reli-able operation of the extended DGs along with the standard RTS system.Speci-fically,the overall reliability of the system displays superior performance when the tie lines 1 and 2 of the DG connected with buses 9 and 10,respectively.The reliability indices of this case namely SAIFI,SAIDI,CAIDI,ASAI,AUSI,EUE,and AEUE shows enhancement about 12.5%,4.32%,7.28%,1.09%,4.53%,12.00%,and 0.19%,respectively.Also,a probability of available capacity at the low voltage bus side is accomplished a good scale about 212.07 times/year.展开更多
In response to the shortcomings of Dwarf Mongoose Optimization(DMO)algorithm,such as insufficient exploitation capability and slow convergence speed,this paper proposes a multi-strategy enhanced DMO,referred to as GLS...In response to the shortcomings of Dwarf Mongoose Optimization(DMO)algorithm,such as insufficient exploitation capability and slow convergence speed,this paper proposes a multi-strategy enhanced DMO,referred to as GLSDMO.Firstly,we propose an improved solution search equation that utilizes the Gbest-guided strategy with different parameters to achieve a trade-off between exploration and exploitation(EE).Secondly,the Lévy flight is introduced to increase the diversity of population distribution and avoid the algorithm getting stuck in a local optimum.In addition,in order to address the problem of low convergence efficiency of DMO,this study uses the strong nonlinear convergence factor Sigmaid function as the moving step size parameter of the mongoose during collective activities,and combines the strategy of the salp swarm leader with the mongoose for cooperative optimization,which enhances the search efficiency of agents and accelerating the convergence of the algorithm to the global optimal solution(Gbest).Subsequently,the superiority of GLSDMO is verified on CEC2017 and CEC2019,and the optimization effect of GLSDMO is analyzed in detail.The results show that GLSDMO is significantly superior to the compared algorithms in solution quality,robustness and global convergence rate on most test functions.Finally,the optimization performance of GLSDMO is verified on three classic engineering examples and one truss topology optimization example.The simulation results show that GLSDMO achieves optimal costs on these real-world engineering problems.展开更多
针对移动机器人寻找最优路径问题,提出了一种融合无标度网络、自适应权重和黄金正弦算法变异策略的樽海鞘群算法BAGSSA(Adaptive Salp Swarm Algorithm with Scale-free of BA Network and Golden Sine)。首先,生成一个无标度网络来映...针对移动机器人寻找最优路径问题,提出了一种融合无标度网络、自适应权重和黄金正弦算法变异策略的樽海鞘群算法BAGSSA(Adaptive Salp Swarm Algorithm with Scale-free of BA Network and Golden Sine)。首先,生成一个无标度网络来映射跟随者的关系,增强算法全局寻优的能力,在追随者进化过程中集成自适应权重ω,以实现算法探索和开发的平衡;同时选用黄金正弦算法变异进一步提高解的精度。其次,对12个基准函数进行仿真求解,实验数据表明平均值、标准差、Wilcoxon检验和收敛曲线均优于基本樽海鞘群和其他群体智能算法,证明了所提算法具有较高的寻优精度和收敛速度。最后,将BAGSSA应用于移动机器人路径规划问题中,并在两种测试环境中进行仿真实验,仿真结果表明,改进樽海鞘群算法较其他算法所寻路径更优,并具有一定理论与实际应用价值。展开更多
文摘In response to the shortcomings of the Salp Swarm Algorithm (SSA) such as low convergence accuracy and slow convergence speed, a Multi-Strategy-Driven Salp Swarm Algorithm (MSD-SSA) was proposed. First, food sources or random leaders were associated with the current bottle sea squirt at the beginning of the iteration, to which Levy flight random walk and crossover operators with small probability were added to improve the global search and ability to jump out of local optimum. Secondly, the position mean of the leader was used to establish a link with the followers, which effectively avoided the blind following of the followers and greatly improved the convergence speed of the algorithm. Finally, Brownian motion stochastic steps were introduced to improve the convergence accuracy of populations near food sources. The improved method switched under changes in the adaptive parameters, balancing the exploration and development of SSA. In the simulation experiments, the performance of the algorithm was examined using SSA and MSD-SSA on the commonly used CEC benchmark test functions and CEC2017-constrained optimization problems, and the effectiveness of MSD-SSA was verified by solving three real engineering problems. The results showed that MSD-SSA improved the convergence speed and convergence accuracy of the algorithm, and achieved good results in practical engineering problems.
文摘Pilot pattern has a significant effect on the performance of channel estimation based on compressed sensing.However,because of the influence of the number of subcarriers and pilots,the complexity of the enumeration method is computationally impractical.The meta-heuristic algorithm of the salp swarm algorithm(SSA)is employed to address this issue.Like most meta-heuristic algorithms,the SSA algorithm is prone to problems such as local optimal values and slow convergence.In this paper,we proposed the CWSSA to enhance the optimization efficiency and robustness by chaotic opposition-based learning strategy,adaptive weight factor,and increasing local search.Experiments show that the test results of the CWSSA on most benchmark functions are better than those of other meta-heuristic algorithms.Besides,the CWSSA algorithm is applied to pilot pattern optimization,and its results are better than other methods in terms of BER and MSE.
基金The authors would like to thank for the support from Taif University Researchers Supporting Project Number(TURSP-2020/239),Taif University,Taif,Saudi Arabia。
文摘CognitiveRadio(CR)has been developed as an enabling technology that allows the unused or underused spectrum to be used dynamically to increase spectral efficiency.To improve the overall performance of the CR systemit is extremely important to adapt or reconfigure the systemparameters.The Decision Engine is a major module in the CR-based system that not only includes radio monitoring and cognition functions but also responsible for parameter adaptation.As meta-heuristic algorithms offer numerous advantages compared to traditional mathematical approaches,the performance of these algorithms is investigated in order to design an efficient CR system that is able to adapt the transmitting parameters to effectively reduce power consumption,bit error rate and adjacent interference of the channel,while maximized secondary user throughput.Self-Learning Salp Swarm Algorithm(SLSSA)is a recent meta-heuristic algorithm that is the enhanced version of SSA inspired by the swarming behavior of salps.In this work,the parametric adaption of CR system is performed by SLSSA and the simulation results show that SLSSA has high accuracy,stability and outperforms other competitive algorithms formaximizing the throughput of secondary users.The results obtained with SLSSA are also shown to be extremely satisfactory and need fewer iterations to converge compared to the competitive methods.
文摘This study proposes a novel nature-inspired meta-heuristic optimizer based on the Reptile Search Algorithm combed with Salp Swarm Algorithm for image segmentation using gray-scale multi-level thresholding,called RSA-SSA.The proposed method introduces a better search space to find the optimal solution at each iteration.However,we proposed RSA-SSA to avoid the searching problem in the same area and determine the optimal multi-level thresholds.The obtained solutions by the proposed method are represented using the image histogram.The proposed RSA-SSA employed Otsu’s variance class function to get the best threshold values at each level.The performance measure for the proposed method is valid by detecting fitness function,structural similarity index,peak signal-to-noise ratio,and Friedman ranking test.Several benchmark images of COVID-19 validate the performance of the proposed RSA-SSA.The results showed that the proposed RSA-SSA outperformed other metaheuristics optimization algorithms published in the literature.
基金supported by the Key R&D Program of Zhejiang(2022C03114)Zhejiang Provincial Natural Science Foundation of China(LJ19F020001,LZ22F020005)+1 种基金National Natural Science Foundation of China(62076185,U1809209)Guangdong Natural Science Foundation(2021A1515011994).
文摘The Salp Swarm Algorithm (SSA) is a recently proposed swarm intelligence algorithm inspired by salps, a marine creature similar to jellyfish. Despite its simple structure and solid exploratory ability, SSA suffers from low convergence accuracy and slow convergence speed when dealing with some complex problems. Therefore, this paper proposes an improved algorithm based on SSA and adds three improvements. First, the Real-time Update Mechanism (RUM) underwrites the role of ensuring that excellent individual information will not be lost and information exchange will not lag in the iterative process. Second, the Communication Strategy (CMS), on the other hand, uses the multiplicative relationship of multiple individuals to regulate the exploration and exploitation process dynamically. Third, the Selective Replacement Strategy (SRS) is designed to adaptively adjust the variance ratio of individuals to enhance the accuracy and depth of convergence. The new proposal presented in this study is named RCSSSA. The global optimization capability of the algorithm was tested against various high-performance and novel algorithms at IEEE CEC 2014, and its constrained optimization capability was tested at IEEE CEC 2011. The experimental results demonstrate that the proposed algorithm can converge faster while obtaining better optimization results than traditional swarm intelligence and other improved algorithms. The statistical data in the table support its optimization capabilities, and multiple graphs deepen the understanding and analysis of the proposed algorithm.
基金supported by the Key R&D Program of Zhejiang(2022C03114)Zhejiang Provincial Natural Science Foundation of China(LJ19F020001,LZ22F020005)+1 种基金National Natural Science Foundation of China(U1809209,71803136)Guangdong Natural Science Foundation(2021A1515011994).
文摘The Salp Swarm Algorithm(SSA)is a population-based Meta-heuristic Algorithm(MA)that simulates the behavior of a group of salps foraging in the ocean.Although the basic SSA has stable exploration capability and convergence speed,it still can fall into local optimum when solving complex optimization problems,which may be due to low utilization of population information and unbalanced exploration-to-exploitation ratio.Therefore,this study proposes a Double Mutation Salp Swarm Algorithm(DMSSA).In this study,a Cuckoo Mutation Strategy(CMS)and an Adaptive DE Mutation Strategy(ADMS)are introduced into the structure of the original SSA.The former mutation strategy is summarized as three basic operations:judgment,shuffling,and mutation.The purpose is to fully consider the information among search agents and use the differences between different search agents to participate in the update of positions,making the optimization process both diverse in exploration and minor in randomness.The latter strategy employs three basic operations:selection,mutation,and adaptation.As the follower part,some individuals do not blindly adopt the original follow method.Instead,the global optimal position and differences are considered,and the variation factor is adjusted adaptively,allowing the new algorithm to balance exploration,exploitation,and convergence efficiency.To evaluate the performance of DMSSA,comparisons are made with numerous algorithms on 30 IEEE CEC2014 benchmark functions.The statistical results confirm the better performance and significant difference of DMSSA in solving benchmark function tests.Finally,the applicability and scalability of DMSSA to optimization problems with constraints are further confirmed in three experiments on classical engineering design optimization problems.The source code of the proposed algorithm will be available at:https://github.com/ncjsq/Double-Mutational-Salp-Swarm-Algorithm.
基金supported by the National Natural Science Foundation of China(62076185,U1809209)supported by Zhejiang Provincial Natural Science Foundation of China(LY21F020030)+1 种基金Wenzhou Major Scientific and Technological Innovation Project(ZY2019019)Wenzhou Science and Technology Bureau(2018ZG016)。
文摘The Salp Swarm Algorithm(SSA)may have trouble in dropping into stagnation as a kind of swarm intelligence method.This paper developed an adaptive barebones salp swarm algorithm with quasi-oppositional-based learning to compensate for the above weakness called QBSSA.In the proposed QBSSA,an adaptive barebones strategy can help to reach both accurate convergence speed and high solution quality;quasi-oppositional-based learning can make the population away from traping into local optimal and expand the search space.To estimate the performance of the presented method,a series of tests are performed.Firstly,CEC 2017 benchmark test suit is used to test the ability to solve the high dimensional and multimodal problems;then,based on QBSSA,an improved Kernel Extreme Learning Machine(KELM)model,named QBSSA–KELM,is built to handle medical disease diagnosis problems.All the test results and discussions state clearly that the QBSSA is superior to and very competitive to all the compared algorithms on both convergence speed and solutions accuracy.
文摘Resource management in Underground Wireless Sensor Networks(UWSNs)is one of the pillars to extend the network lifetime.An intriguing design goal for such networks is to achieve balanced energy and spectral resource utilization.This paper focuses on optimizing the resource efficiency in UWSNs where underground relay nodes amplify and forward sensed data,received from the buried source nodes through a lossy soil medium,to the aboveground base station.A new algorithm called the Hybrid Chaotic Salp Swarm and Crossover(HCSSC)algorithm is proposed to obtain the optimal source and relay transmission powers to maximize the network resource efficiency.The proposed algorithm improves the standard Salp Swarm Algorithm(SSA)by considering a chaotic map to initialize the population along with performing the crossover technique in the position updates of salps.Through experimental results,the HCSSC algorithm proves its outstanding superiority to the standard SSA for resource efficiency optimization.Hence,the network’s lifetime is prolonged.Indeed,the proposed algorithm achieves an improvement performance of 23.6%and 20.4%for the resource efficiency and average remaining relay battery per transmission,respectively.Furthermore,simulation results demonstrate that the HCSSC algorithm proves its efficacy in the case of both equal and different node battery capacities.
文摘Identifying the parameters of photovoltaic(PV)modules is significant for their design and simulation.Because of the instabilities in the weather action and land surface of the earth,which cause errors in measuring,a novel fuzzy representation-based PV module is formulated and developed.In this paper,a novel locomotion-based hybrid salp swarm algorithm(LHSSA)is presented to identify the parameters of PV modules accurately and reliably.In the LHSSA,better leader salps based on particle swarm optimization(PSO)are incorporated to the traditional salp swarm algorithm(SSA)in a serialized scheme with the aim of providing more valuable information for the leader salps of the SSA.By this integration,the proposed LHSSA can escape the local optima as well as guide the seeking process to attain the promising region.The proposed LHSSA is investigated on different PV models,i.e.,single-diode(SD),double-diode(DD),and PV module in crisp and fuzzy aspects.By comparing with different algorithms,the comprehensive results affirm that the LHSSA can achieve a highly competitive performance,especially on quality and reliability.
文摘Contemporarily,the development of distributed generations(DGs)technologies is fetching more,and their deployment in power systems is becom-ing broad and diverse.Consequently,several glitches are found in the recent studies due to the inappropriate/inadequate penetrations.This work aims to improve the reliable operation of the power system employing reliability indices using a metaheuristic-based algorithm before and after DGs penetration with feeder system.The assessment procedure is carried out using MATLAB software and Mod-ified Salp Swarm Algorithm(MSSA)that helps assess the Reliability indices of the proposed integrated IEEE RTS79 system for seven different configurations.This algorithm modifies two control parameters of the actual SSA algorithm and offers a perfect balance between the exploration and exploitation.Further,the effectiveness of the proposed schemes is assessed using various reliability indices.Also,the available capacity of the extended system is computed for the best configuration of the considered system.The results confirm the level of reli-able operation of the extended DGs along with the standard RTS system.Speci-fically,the overall reliability of the system displays superior performance when the tie lines 1 and 2 of the DG connected with buses 9 and 10,respectively.The reliability indices of this case namely SAIFI,SAIDI,CAIDI,ASAI,AUSI,EUE,and AEUE shows enhancement about 12.5%,4.32%,7.28%,1.09%,4.53%,12.00%,and 0.19%,respectively.Also,a probability of available capacity at the low voltage bus side is accomplished a good scale about 212.07 times/year.
基金National Natural Science Foundation of China,Grant No.52375264.
文摘In response to the shortcomings of Dwarf Mongoose Optimization(DMO)algorithm,such as insufficient exploitation capability and slow convergence speed,this paper proposes a multi-strategy enhanced DMO,referred to as GLSDMO.Firstly,we propose an improved solution search equation that utilizes the Gbest-guided strategy with different parameters to achieve a trade-off between exploration and exploitation(EE).Secondly,the Lévy flight is introduced to increase the diversity of population distribution and avoid the algorithm getting stuck in a local optimum.In addition,in order to address the problem of low convergence efficiency of DMO,this study uses the strong nonlinear convergence factor Sigmaid function as the moving step size parameter of the mongoose during collective activities,and combines the strategy of the salp swarm leader with the mongoose for cooperative optimization,which enhances the search efficiency of agents and accelerating the convergence of the algorithm to the global optimal solution(Gbest).Subsequently,the superiority of GLSDMO is verified on CEC2017 and CEC2019,and the optimization effect of GLSDMO is analyzed in detail.The results show that GLSDMO is significantly superior to the compared algorithms in solution quality,robustness and global convergence rate on most test functions.Finally,the optimization performance of GLSDMO is verified on three classic engineering examples and one truss topology optimization example.The simulation results show that GLSDMO achieves optimal costs on these real-world engineering problems.
文摘针对移动机器人寻找最优路径问题,提出了一种融合无标度网络、自适应权重和黄金正弦算法变异策略的樽海鞘群算法BAGSSA(Adaptive Salp Swarm Algorithm with Scale-free of BA Network and Golden Sine)。首先,生成一个无标度网络来映射跟随者的关系,增强算法全局寻优的能力,在追随者进化过程中集成自适应权重ω,以实现算法探索和开发的平衡;同时选用黄金正弦算法变异进一步提高解的精度。其次,对12个基准函数进行仿真求解,实验数据表明平均值、标准差、Wilcoxon检验和收敛曲线均优于基本樽海鞘群和其他群体智能算法,证明了所提算法具有较高的寻优精度和收敛速度。最后,将BAGSSA应用于移动机器人路径规划问题中,并在两种测试环境中进行仿真实验,仿真结果表明,改进樽海鞘群算法较其他算法所寻路径更优,并具有一定理论与实际应用价值。