In order to overcome the problem that the CUR matrix decomposition algorithm loses a large amount of information when compressing images, the quality of reconstructed images is not high, we propose a CUR matrix decomp...In order to overcome the problem that the CUR matrix decomposition algorithm loses a large amount of information when compressing images, the quality of reconstructed images is not high, we propose a CUR matrix decomposition algorithm based on standard deviation sampling. Because of retaining more image information, the reconstructed image quality is higher under the same compression ratio. At the same time, in order to further reduce the amount of image information lost during the sampling process of the CUR matrix decomposition algorithm, we propose the SVD-CUR algorithm. The experimental results verify that our algorithm can achieve high image compression efficiency, and also demonstrate the high precision and robustness of CUR matrix decomposition algorithm in dealing with low rank sparse matrix data.展开更多
文摘In order to overcome the problem that the CUR matrix decomposition algorithm loses a large amount of information when compressing images, the quality of reconstructed images is not high, we propose a CUR matrix decomposition algorithm based on standard deviation sampling. Because of retaining more image information, the reconstructed image quality is higher under the same compression ratio. At the same time, in order to further reduce the amount of image information lost during the sampling process of the CUR matrix decomposition algorithm, we propose the SVD-CUR algorithm. The experimental results verify that our algorithm can achieve high image compression efficiency, and also demonstrate the high precision and robustness of CUR matrix decomposition algorithm in dealing with low rank sparse matrix data.